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INTRODUCT | ON

The theory of Lie algebras, Lie groups and their representa-
tions is a subject which hardly needs of a lengthy intoduction to
highlight its intrinsec mathematical interest and manifold applica-
tions in physics. It is also a subject whose exposition in a course
for physicists may be done from a wide variety of starting points,
directions, speeds and objectives. We assume that the audience of
physicists is reasonably confident in the use of quantum mechanics,
angular momentum theory and the standard SU(3) methods of the old
quark model, so we shall proceed presenting some of the Lie algebra-
ic and group theoretical concepts, offering alternatives and gener-
alizations, with the aim that the subject acquire a certain system-
atic structure. This should enable the student to work more at ease
when applying the methods of Lie algebras and groups to the problems
in his field.

The territory we will try to make more accessible is that of
representations of noncompact algebras and groups. Symmetry algebras
and groupsé la Wigner-Raccah are probably standard in any physics
curriculum, but dynamical algebras and the associated groups are
less so. The similarities between the two are sufficient to use the
concepts of the former in order to gain familiarity with the latter;
but the differences in formalism and applications are sometimes dra-
matic. Unitary representations of noncompact groups are infinite
dimensional, and generally describe covariance instead of invariance
of a system.

Chapter 1 deals with the Heisenberg-Weyl algebra of quantum me-
chanics, and Chapter 2 with the corresponding group. This is an easy
case, as the group is nilpotent and close to the abelian case. Chap-
ter 3 explores a semisimple noncompact case, the 2+1 Lorentz alge-
bra and group, as well as its covering groups.

We do not claim to present everything you always wanted to
know in this field, as have other authors in References (1) and (2),
so we hardly need to start with a disclaimer. We do wish to point
out, however, that many of the prime areas of research in the last
years have been left out, notably higher dimensional cases and their
classification, similarity methods in differential equations, in-
duced representations, pseudogroups, superalgebras and gauge theo-
ries.

It is hoped that this material will prove useful for mathemat-
ically inclined physicists. We mut apologize both to the purer math-
ematical analysts for glossing over defining concepts or presenting
proofs; also to the applied physicists, for not presenting the ener
gy levels' match of any molecule, atom, nucleus or resonance. We
hope our list of references will partially atone for the sins of
omission. Those of comission, we also hope, will entice the reader
to explore the source literature.



CHAPTER 1: A LIE ALGEBRA

We start this set of lecture notes with an example -a rather
simple and presumably well-know one- of a Lie algebra. We shall
then examine its representations, its irreducible representations,
and finally, its unitary irreducible representations.

1.1 A Lie algebra and its bases.

We consider the Lie algebra w with elements Q, P and I, over
the field of complex numbers, defined by its Lie bracket operation

[Q,Pl=41, [Q,1]=0, [P,I]=0. (1.1)

The symbols used for Q and P suggest, of course, that these are
the quantum-mechanical operators of position (multiplication by the
coordinate ¢ ), momentum (= (% times differentiation with respect
to ¢ ) while T should be a multiple % of the unit operator 1, on
the space of quantum mechanical wavefunction completed with re-
spect to an inner product so as to form a Hilbert space, normally
L2(R) . We shall later obtain these as a realization of w, but mean-
while they are.to be taken only as formal symbols.

The three elements Q, P and I constitute a vector basis for
the algebra, in the sense that any element of w can be written as

E= xQ +yP +2zI , x,4y,z€C (1.2)

An algebraic basis for w is provided by Q and P alone, as I is pro-
duced through the Lie bracket in the first of Eqs. (1.1).
Particular elements in w which we will refer to are

R= L1 (g-¢p), L=2L1 (oriP). (1.3a)
V2 V2

These are to be related, later, with the raising and lowering oper-
ators for the harmonic oscillator wavefunctions. They satisfy

[LRI1=1, [L,Il=0,[R,1] =0, (1.3b)
and may thus also serve to define w over the field C.

1.2 Representations.

A representation p of a Lie algebra @ on a vector space V
is a homomonphism (i. e. a mapping which preserves the operators
of the algebra: Linear combination and Lie brackets)

-

p: a=—>gl (V) , (1.4)
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from a 4nto the algebra gl(V) of linear operators on V, where
the Lie bracket is the commutator.

I {X'}'Z7 is a D-dimensional vector basis for a, abstractly
defined through the set of structure constants cjk as

D

5 » I3
XX = 4 £Z=l Sy % - (1.5)

and Xj = p(xj) € gl1(V), then the homomorphism requirements are
p(cj. Xj + ckxh) = ¢ p(Xj)+ e p(Xh) - CjX-i +ck)(h (1.6a)

D
= A 2
P (LXKl ) = XX, = XKy = 4 ; < X, (1.6b)

When V is an N-dimensional vector space, gl(V) is the set of
NxN matrices. Amongst these, for w, we should be able to find three
matrices {, P and | such that (1.1) holds replacing each symbol for
its boldface homonym, and the bracket meaning commutation. Abstrac-
tly, you will recall that the Lie bracket is only required to be
skew-symmetric [A,Bl= - [B,A]l, bilinear [aA+bB,Cl=al A,C]+b[B,C] ,and
to satisfy the Jacobi identity [A,[B,Cl]1+[B,[C,All+[C,[A,B]].
Poisson (3, Sect I11-D and V-A) and Moyal (4,5) brackets, as well as
commutators, satisfy these three requirements.

When V is a function- or other infinite-dimensional space,
gl (V) is the set of all linear operators with domain and range in
that space. Amongst these we should be able to find, for w, three
linear operators ) ,[P and ] such that (1.1) holds for them. Clearly
here we run headlong into trouble, since we can easily find that
some proposed operator does not 'quite' have V for its domain, or
that it may send elements of V out of V . We may require that it
do the job only in a dense subspace of V, and that will take us into
Hilbert spaces.

1.3 The adjoint representation.

For any D -démensional Lie algebra a [with a D -dimensi nal,
vector basis {Xj}f= ), defined by the structure constants c.k=—ck.
in the Lie Bracket (1.5)] one can always produce a DxD mattix re&-
resentation, called the adjoint representation pA of a, through

A_ A A _.on .on
Kp = 0 (X,), (Xk)mn =de,p=-4e, . (1.7a)

To prove this, replace (1.7a) into (1.5), Xh's replacing Xk's, thus
finding for the m-n element of this equality

A5 N 5 n 5 n _
:2;:[ij s * Com ch + Cip s 1 =0, (1.7b)



after a dummy-index change. Equation (1.6) is equivalent to the
statement of the Jacobi identity for the algebra.

The adjoint representation of w may be obtained from (1.7),
numbering Q, Pand T in (1.1) by 1, 2, 3. As only 3 = -1 and

¢?,= 1 are nonzero 21
12 ,
00 0 004
@ -too-2) PP-=looo]) 1" - 0. (1.8)
00 0 000

’ 2

This is a representation, but it is not fadithful, as the algebra
element | is mapped on the zero matrix. This is a general feature
of algebras with a centre, i. e. element(s) which commute with
every element of the algebra.

1.4 A faithful 3x3 matrix representation.

For the case of w we have to use other arguments: If Q s
represented by a matrix with a single off-diagonal nonzero element
in the (a,b) position, a#b, and P by another such matrix with a
nonzero (c,a) element, ¢ #a, the commutator representing I will have
non-zero elements in the (b,c) position and, if b=c, in the (a,a)
position. The latter will commute with the former two when the
(a,a) element is zero, i. e., when b # ¢. Adjusting signs and £' s
so that (1.1) be obtained, we may thus provide a simple 3 x 3 faith-
ful representation through a=1, b = 2, ¢ = 3:

§ 010 § 000 4 000
Q=000 ) PP=1oo0o0 [®=fo0oo00 (1.9a)
000 100 040 /.

’ b

As a representation is a linear mapping, every element (1.2) of w
may be represented through

- xqf+ ypb + 218 - (1.9b)

g oo
&~ X
oo

1.5 Equivalent representations and isomorphisms of w.

We may perfor2 any 5|?|lar|ty trazsfor?atlgn on r presentation
matrices (as H Moe = for || and I ) and obtain
another equivalent representatlon For w we may do more, however:
We can perform linear combinations of its vector basis elements
obtaining new basis elements with the same commutation relations:

2 . 2 a, b, ¢, d,
f = c d v P & v B 6,
1 0 0 ad-be 1/, (1.10)

(1.1) for Q, P and T implies (1.1) also holds for Q, P and
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I implies (1.1) also holds for Q, P and I. The linear transforma-
tion (1.10) is an isomorphism of w. This is a rather exceptional
case, as usually the isomorphism group of a Lie algebra is only the

adjoint action of the Lie group associated to it. For w it is
126L1(2,¢C) .

The above paragraph binds the 'simplest' representation (1.9)

to the more popular representation [3, Eq' (2.4); 6, Egs. (2.1)]
given by

(1.11)

o~

011
Qp: PP: 100 Ip=
-100

’ b4

&,

S o~
S D .
coo
N NS
N N o

It is more popular since it may be generalized straighforwardly as
an (N+2) x (N+2) representation of the (2N+1)-dimensional
Heisenberg-Weyl algebra used in N-dimensional quantum mechanics,
through 'vectorizing' the nonzero elements of @° and PP. As matri-
ces, the link between (1.11) and (1.9) is

AT @ A = @b e Pl IS (1.12a)
A PP A i@l P riyd (1.12b)
A_l ¥ A =-2m816 (1.12¢)

where in this case

B ALy 0
A= 00581
0o 0 -1 " (1.12d)

1.6 The Fock realization.

The Heisenberg-Weyl algebra can be also furnished with infinite-
dimensional representations. To this end we prefer to work with the
basis R, L and I as given by (1.3). We may propose to associate to
each of these elements the formal Fock operators

F d

R"—>RF=Z,L'—>L =72—,I'—+ IF

=1, (1.13)

i.e. LF is the differentiation operator ,RF §lz)= z4(z) is the
multiplication-by-argument operator, and [", the unit operator.
Acting on any differentiable function f(z) we can see that (1.13)
follow the commutation relations (1.3b). We prefer to speak of
(1.13) as a nealization of the algebra w, since a representation
is defined only when a proper vector space V in (1.4) is fully
specified. The Fock operators are purely formal up to now, with no
mention as to their domain.
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1.7 The power-function basis,

Clearly, we need some functions. Consider the infinite se-
quence of power functions

p, (2] = MM on€z = {0,41,42,...,Re vE[0,1).  (1.14)

These provide a proper basis for a function space V as they are
differentiable, and (1.13) belong to gl(V):

R p, (2) = p.; (2], (1.15a)

LF p "t2) = taw) p %, 1), (1.15b)

1F p,(2) = p)la). (1.15¢)
n n

The action of (1.13) can be extended to the whole of V through
linear combiation. Note carefully that the vector space axioms
speak only of finite linear combinations, and hence V is not the
space of z~ times analytic functions in some annullus around the
origin (having a convergent Laurent expansion), but only the sub-
space of finite sums of power functions. The limit points are the
closure of that space, of which we shall have a right to talking
only when we introduce a noam into that space. Meanwhile, though,
we do have a representation through infinite matrices with rows and
columns n,m € Z, the set of integers:

mm>2+1+0 > -1 —>~2X

{

2 0 1 l

{

1 0 1

J I

RF(\)) = 0 0—1 (1.]68)

\
-1 0 1
{
-2 0
v




\m>2>1>0->-] -2 >+

n
1
Yl vz o
LF(V) B — Vvt - (1.16b)
B Yo
% ”1 0
\ )
it 1, (1.16c)

acting on infinite-component vectors, where pv(z) is represented by
a column with a single nonzero entry 1 in the n- position. This
entry is raised by one place by the raising matrix (1.16a), lowered
and multiplied by n + v by the lowering matrix (1.16b), and left
invariant by (1.16c).

Clearly also Rr(v), LF(V) and IF(V)g|ven by (1.16) satisfy the

commutation relations (1.3b): LF(v)RF(v) and RF(v) LF(V) arg diag-
onal matrices with entries v+ n + 1 and v + n along the diagonal.

1.8 Irreducible and indecomposable representations.

When v is not zero, every p;(z) may be moved and, through re-

peated application of RF(V) or LF(V),

taken to a function propor-
tional to any other p;(z), m€ Z. No subspace being invariant, under
the three algebra generators;the whole space spanned by {pn(z)}nEEZ
is thus required as a basis for V , which is thus an {treducible re-
presentation basis.
When v=0 then LF(v

dramatic happens: If n < 0, pﬁ(z) may be lowered or raised to any

)

. th .
has a zero in the 0 column, and something

other p%(z), m€1Z, but if n=0 it may be raised, but not lowered
below n=0. The space spanned by {pg (z), n € Z} may be divided thus
into two disjoint subbases: {pg(z), n = 0lwhich still transformz
irreducibly under the algebra, and the subspace generated by {pn(z),
n < 0} which does not: It 'spi€fs over' into the first through re-
peated action or the raising operator. Every element of w in the
Fock representation (1.16) for v = 0 and its powers, are represen-
ted by a block-triangular infinite matrix acting on the basis vec-

tors as
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0 0 0
A | B \/PEoP\_[APen @ *BP ) (1.7

= =0 - 0
O | C J\Prg!? C Pleg) 2

where we have separated by horizontal and vertical lines on Oth and

(-1)th rows and columns. The representation of w provided by A is
still irreducible, but (1.16) is reducible, though {ndecomposable
since, as can be verified, it can not be decomposed fully into a
block-diagonal form signifying two (or more) irreducible parts.

Triangular matrices cannot be diagonalized.

1.9 Self-adjoint representations.

In Lie group theory one is generally interested in hermitian
or self-adjoint irreducible representations of Lie algebras (1.5);
thence the apparently unconfortable £ in (1.5)-(1.6b), which in -
sures that we may revert to the algebra a over the real field and
still retain hermiticity for every element of the algebra. For our
Lie algebra w, this is needed by the current axioms of Quantum Me-
chanics as given by Dirac and von Neumann (7, 8 Sect. 2.1, 9) which
require that the position and momentum operators () and P represent-
ing Q and P in w be self-adjoint -or rather, have self-adjoint
extensions- in L4(R). This turns into a statement of intention to
reduce our attention to representations (1.4) where V is a Hilbernt
space endowed with and Cauchy-sequence closed under an appropiate
positive definite inner product (*,*): UxV - C. Axioms require that
it be linear in one argument (physicists prefer the second argument)
antilinear in the first, (4,4) =0 and (6 gl=0 iff §=20. For
some purposes a noxm rather than an inner pfoduct is needed; so V
is taken to be only a Banach space, but we shall forego this weaker
scenario.

1.10 Hermiticity imposed.

Returning to our now self-adjoint representation for Q, P and
I in w, the reader will no doubt recognize the Schr8dinger realiza-
tion as possessing a self-adjoint extension in L%(R). In accord
with our emphasis on alternate approaches, however, let us insist
in staying WItF the Fock r alization (1.13) which from (1.3a) must
be such that | T =1F and of course [FT= [F. what we
need is a Hllbert space B such that these adjunction properties
hold, i. e., an inner product (-, )B where the formal Fock operators
(1.13) satisfy

(LF g, g lg = (4, I_RFg)B for all ¢, g, € B, (1.18)

plus some function-analytic minutae to determine the geometry of the
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space of functions which belong to B so that the limit points of
Cauchy sequences of these are in the space.

It has been the work of Bargmann (10) to turn (1.18) into a set
of two coupled partial differential equations for the weight function
of a measure on the complex plane, and to determine precisely the
geometry of the space -thereafter called Bargmann's space. Gener-
alizations of this procedure have been performed by Barut and Girar-
dello (11) and the author (12,13,14 Sect. 9.2). Let us follow
a different argumentation here, based on the matrix representation
(1.16) which we have already, and which we want to turn into a
hermitian matrix representation. :

An orthonormal denumerable basis for the putative Hilbert space

B, {g;(z), n € 7} should have the property of providing a matrix
representation of w through

’ * ' *
(I—F (V5mn } (fzr\r)v’ EF?WV)B:(‘RF@;’?;)B =((f:')L’RFCf;n))B :(RF (Vgnm,
(1.19)

!
a (Vsmn = (?;’?;)B: §,,° The representation (1.15)-(1.16) is

and (]
not far off the mark The nonzero elements of LF(V)are indeed in

the position of the nonzero elements of RF(v)T (the dagger meaning
transposition and conjugation), only the normalization is not quite
right. If we were to set

+
q;(z) = az }o;i(z) =a; M 1 aZGC, nel, (1.20a)
then (1.15) and (1.19) lead to lamz(nw):l a;l)_ |Z. As absolute
values are positive real numbers, this implies first,that v must be
real. As for #u, two recurrence relations for |a;| in terms of

IQZIZ may be set up, depending on whether n > 0 or n < 0:

4 2 - + +
I V:) I & lavol I(,\) + ]) / I‘(Vl b Vo ]),, (1'20b)
v 7 v, 2 + 20c
IC-VLI ICLOI I(\) + ” / I(V -n ”’ n=0. (]' )

Equation (1.20b) yields a recursion relation, while (1.20c) is a
limitant for v # 0 as T'(v-n +1) alternates in sign for n > ], yet
absolute values must be positive. It follows that only v=0 in
(1.20b) will produce submatrices in (1.17) following the adjuntion
property (1.19), necessary for a self-adjoint representation of w.
There, an orthonormal basis is an pg(z), with

-1/2
a,= (n!) / a , a =0, n>0. (1.20d)

0’ -n
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1.11 A measure for a Hilbert space.

What is the Hilbert space? In that spa??z,an orthonormal basis
should be provided by ¢ (z) = a AP 0(z)=(n") a,z, n = 0(we have
set the phase of a_independent ot n). What is a possible inner pro-
duct which would satisfy this requirement? We may follow Galbraith
and Louck (15) in proposing, for §(z) and g(z) analytic in a common
open circle containing the origin,

= *
(§,9)g, = lapl™ § (d/dz)” gl2) |, (1.21a)

In this way, one ensures that

-1z dt |

(?n’gn')GL = (nton't) n

g -Gn,n’.(l.ZIb)
z=(0

The inner product (1.21) is very handy for computations invol-
ving quantum creation and annihilation gperators, since (1.21a) is
in shell-model language just<0|f(a)gla') )|0 > while § and g are
usually polynomials. Mathematicians -and many physicists- prefer
inner products defined through integrals since Hilbert space theory
is usually cast in that way. |f we momentarily assume that g in
(1.21a) satisfies also the conditions of the Fourier integral theo-
rem -although the qn(z) clearly do not- we may write

[aol_z ﬁ(d/dz)a’E %ﬂ / dp/dz' eLP(Z‘Z’)g(z’)lzzo
/ d;o/dz’ § Lip) glz')e P2’

(4,9)g;

- lay|
(1.22)
o Ao
- layl™t 4= fdz[ dz* ¢*(2*)glz)e % ?
~ oo Ao

2
fdzz gl gtz) & 1217 < g1
: §-9lp,

After taking z=0 we have changed variables to the independent
z=z',z* = {p, then to variables x=Re z= L( z + z*] and

y= Imz =4 4+ (z - z*) which are readily ‘interpreted as the real
and imaginary parts of a complex variable z, of which both 6 and g
are analytic functions, the integration ranges of z and z* are
convertible |nto an integration over the complex z = x +{y plane C,
with measure dz = dxdy = d Rez d Im z = |z|d|z| d arg z.
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If we set ay= I, we have exactly Bargmann's inner product
(',')B (10, Eq. (1.6)), where (1.21b) can be easily verified, in
spite of the fact that qn(z) does not abide the Fourier transform
conditions. We may abandon the definition of (§’g)GL altogether and
regard now only (6,9)3 which poses its existence requirements quite

openly: 4(z) must be entire analytic functions (i. e. no poles or
branch cuts are allowed on the finite z -plane) and the growth at
infinity should be overcome by the weight function e'lzl . In fact,
the functions may grow in some direction in C -as analytic func-

tions do-, but may not grow faster than exp(1 [0} ZZ) for some phase
¢ as otherwise they would overwhelm the weight functions in some
direction of the complex plane.

The space of entire analytic functions of growth (2,1/2) con-
stitute -as proved by Bargmann (10, Sect. 1)- a separable Hilbert
space under (+,*),. In Bargmann's space, the Fock operators (1.13)
constitute thus a self-adjoint irreducible representation of the
Heisenberg-Weyl algebra (1.13).

1.12 The enveloping algebra.

The construction we have just completed is straightforward,
except, we should say, in our original choice of basis functions
(1.14) . Had we chosen a set of functions other than power functions,
for example trigonometric ones, the construction of the representa-
tions of the algebra and the argument about their irreducibility and
self-adjointness would have been considerably more involved. We
chose power functions for the reason that we knew that {pV(Z)} would
map among themselves up and down the ladder under multipllgation and
differentiation: They are eigenfunctions of the operator R ]_F =
= z d/dz with eigenvalue n + v . The product R L between algebra
elements is undefined within the framework of the algebra. It may
be incorporated through the simple device of defining a (noncommuta-
tive) product operation for the algebra elements and placing this
product in a new set called the enveloping algebra a of the origi-
nal algebra a. _ _

If we want @ to be an algebra itself, the product in a must be
bidistributive with respect to the sum,

(Q1XL + CZXj) Xk = CIXLXk = CIXLXk + QZXij, (1.23a)

XL(C3Xj + c4Xk) = chin + C4X£Xk’ cp € C, (1.23b)

and with respect to the Lie bracket it must satisfy the 'Lelbnitz
aule!

[XA:’Xj‘XfZ] = [XL.,XJ, ]x{2 + xj. [XL.,Xh I, (1.23¢c)
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which is an identity if the Lie bracket is the commutador. The en-
veloping algebra @ of a has the structure of a ring (i.e. a non-
commutative bilinear product is defined, but inverses under the pro-
duct are not, and there is generally no identity under this product
-although it may be defined for algebras with a centre when we take
equivalence classes modulo the centre).

1.13 The Schr&dinger realization.

The enveloping algebra is a very useful concept when it comes
to find ways of building irreducible representations and classi-
fying them, as the Casimir operators of semisimple algebras lie

there. The properties of N = RL = %—(PZ +Q2 -1) under commutation

with the elements of w are [N,R] = R, [ N,L] = - L and [N,I] = 0 so
that if in some representation we manage to construct an eigenvector
¥ of || with eigenvalue p, then by a well-known argument, R~ ¥
will also be an eigenvector of |{ with eigenvalue u + n, and so will
L ¥ with eigenvalue u - n, unless such a vector is zero.

~ We can put these concepts to work on the Schrodinger realiza-
tion of the Heisenberg-Weyl algebra:

0 > 0°- q, P-IP- -i% , I-[%-1, (1.2k4a)
whereby
2
S_ 1 d S 1 d s 1, d 2
R+Rom = (g - 5, L 15 =—(q+ &1, N-J| S=5(- & +¢°-1).
(1.24b)

From the arguments of the previous section, we look for the solutions

Wig) of
Nsw; (q)= (n+v)w; (¢), ne Z, Re vE[O,T). (1.25a)

These are any linear combination of

W;(q) QZ U(-[ n+v] - %, V7 q),

(1.25b)
©lg) = d° V(-lnrl- 1, VT q),

where c; and dz are arbitrary constants, and U and V are the Para-

bolic Cylinder functions classified in attention to their asymptotic
behaviour (see 16, Sect. 19.3). They are related to the more famil-
iar Whittaker D and U funtions through



15

Ulo,g)0__j ol =22 0wt -
;174 - o/ -4'/4 w1 1 85 (1.26a)
© 7°49,7,7"
Vio,g)=r 'lor plsin 10 D__y lyle D__;1pl-y)}. (1.26b)

It is an easy matter to verjfy that]R andll§ indeed raise and
lower the values of n in {WV T } by units (16, Sect. 19.6):

RS v, ()= (e /e, 7)) v lal, (1.27a)
L° ¥ ()= (nmvl(e/e, ) ¥ola), (1.27b)
R (gl (o) (d%/d %)) 1,7, a), (1.28a)
L’ (q)= (d%d %) 1Y (q). (1.28b)

With (1.27) we are at the same point of the program for the
Schrodinger reallzatlon as we were for the Fock realization, when
we wrote (1.15a) for cn= 1. The irreducible representatlg s of w
we obtain is thus identical to §Ta} of Egs. (1.16) for R and
LF (V] but now for RS ¥ and | mE We have now two sets of basis

vectors, {¥" (q)} WE 7 and {1’ (q) hE 7 instead of the apparently
single one {p (z)} hE 7 in (1 1&) As far as the representation of

the algebra is concerned we relate them asIRS{Z; LF(v)T
R_}E; RnggT. This provides the 'two' representations for the

Y

Fock case through p;++ b1 -

1.14 The special v= 0 cases.

Again, for v=0 we obtain from {W } neE 7 the upper - triangular,
and from {T } A€ 1 the lower- trlangular reducible indecomposable
representatlons (1.17). The irreducible parts are provided by

0
n} g = {Tn}n
following:

<0 - Specifically, the Ton -functions are the

0 . 0 0 w2 Y2 i
v (q) =¢ D (/T q)= e, ? e H lq), n=0,1,2,... (1.29a)
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2
= c_on ZMZ_I Jaoer 12 in_lerfc q, n=1,2,..., (1.29b)

0
v_,lq)
where H (q) are the Hermite polynomials and i"erfc ¢ the repeated
|ntegra15f dq' im_ erfc q' of the complementary error function

i
i derfe q= erfc q= In I/Zf dq'e 4 2. The Ta -functions, on the other
hand, are related f r n 0 to the repeated integrals of Dawson's

integral F(q) = ¢ ¢ f q' as

2 q )
0, . ,0 -q°/2 0 -1 14 2/2 0 vy_ sin(nn/2)
- d V7~ (d d (q") ’
el by e T g f e ) S e
0

n=1,2,..., (1.30a)

2
Tg lq) = df 212 A/ gy, (1.30b)

Z
¥ tgrs ol TR SUT QTE el

" " I(L'q), 1n=1;25%4. (1.30¢)
; ¥ 0 : :

Eor negative n' s, the T_n(q) are thus simply proportional to

v, (4q).

We have gone into some detail in spelling out the eigenfunc-
tions of the Schrédinger operator ]NS= RS LS, The reader will have
recognized that (1.29a) are proportional to the well-known quantum
harmonic oscilator wavefunctions, and mS the corresponding number

1

operator related to the Hamiltonian as Hho: ]NS 2 I,

1.15 Self-adjoint extensions of the number operator.

When looking for self-adjoint representations of w, one can
follow the same argument which lead us to 31 .18) and conclude that
we must stay with the subset of y0 and T 10N =2 (0. In that
direction, the search for an appropiate Hllgert space will lead us
to L4 -spaces, where the \yo , =0 are orthogonal and dense.

It is at least as instructive, however, to adopt a different
approach which will yield results gseﬁill i?rother contexts as well.
Since it was the number operator [N°>=[H I which provided the
basis functions (1.25), for the representations of w, let us examine
the LZ-spaces where I\° may be sel —adjongt This is a consequence
of but not a requisite for (Dg [Pg and [[° to have this property. We
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recall some facts: In the L (a,b) Hilbert space defined through an
inner product (4 g)(a b= 'f dq 6(q) glq), we may show that

(6BJ g)(d 5= W(ﬁ g) b (BV 6, g) holds, provided the norms
of 5, 9s Nsﬁ and Hsg are flnlte The ﬁfoL skian W(é g) ﬁg gﬁ’
valued at @ and b, will be zero and]NS Hermitean, for spaces of
functions with fixed logarithmic derivatives at those points, i.e.
h'(a) = P, hla) and h'(b) = 9, h(b). Each pair of values p, and

pb thus determlnes, together with certaln further technical require-
ments related W|th the domain ofﬁ“ and its adjoint, a self-adfoint
extension ofﬂq is determined. |If -a and/or b become infinity, the
condition of asymptotic decrease -so that the norm of s remain

finite- takes precedence. We shall examine first the possibilities

for the cas (a,b) = (-=,o), then (0,~) and last briefly, (a,b) fi-
nite.
1.16 L2(R).

The Y- and T-functions in (1.25b) were chosen for their asymp-
totic properties (16, Sect. 19.8):

2

- V(q) - (cx z(n+v)/2) qn+v e /2 ’ (1.31a)
7
T; (q) = (@0 2~ (wvl/z -1/, q-n—v—]eq /7 (1.31b)

The growing Gaussian behavior of Tn -for all n and v is sufficiept
reason to discard these as elements of the LZ(R) space where [\

is to be self-adjoint. The next condition, at ¢> -», may be obtain-
ed through the special function relation

‘{’\)(—q)= cos[n(n+v)]w"(q)+[m“/d“ r(-n-v)]T“(q), (1.31c)
and a similar one for T)(-q) which we omit as it is now unnecessary.
From (1.31a) and (1. 31c? it follows that for g> @, only when the
second summand in (1.31¢c) is zero will ¥, (- -q) be in LZ(R). The
finitudg of an(q) is proven as an immediate consequence of (1.25a),
since ° has no singularities for finite ¢. This means that

-n-v= 0, -1,-2,...i. e.,that v=0 and n is a non-negative integer.
The end result: Only {Wn(q)} as given in (1.29a) may serve as
basis functions for a self- ag/blnt representation of w on L%(R).
This set is closed under the algebra (c. f. Egs. (1.27a), (1.27b))
and fUnctlona] analySIs tells us that the closure of the linear hull
of {¥ }n >0 is LZ(R). This quantizes the problem through restric-
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ting the spectrum of ]ﬂs to be the set of nonnegative integers. We
thus reconstitute the representation afforded by the Fock realiza-
tion in Bargmann's Hilbert space. The unitary equivalence of the
two will be implemented in Sect. 1.18.

1.17 LZ(R?).

Let us now turn to Lz(O,m) spaces where the dense subset of
once-differentiable functions have fixed logarithmic derivative at
the origin, i. e. where h'(0) = p h(0). The integrability conditions
demanded by asymptotic behaviour still demand that only the WZ(Q)
appear. We find from special-function tables that

v Z(n+v)/2 Tr1/2

, / TigL1-nv1), (1.32a)

\PZ(01= c

(n+v)/2+]ﬂl/2 ol

dwnv(q)/dqlq=0 - QZ Z % [-n-v]). (1.32b)

The basis of the p=0 space of functions whose derivative vanishes at
the origin are ¥ "(q) such that (1.32b) is zero. The Gamma function
provides this beﬁaviour through its poles at = [-p-v]=0, -1,-2,...
This means v=0 and n=ZN where N=0,1,2,°--. Thg even-n  harmonic
oscillator wavefunctions in (1.29a) are thus obtained. Next, the ba-
sis of the p== space of functions which vanish at the origin re-
quire that (1.32a) be zero. Again, this is provided by the Gamma
function for o [1-p-v] = 0, -1,-2,...;, i. e. v=0 and n=2N+1 where
N=0,1,2,---. These are the odd-n harmonic oscillator wavefunctions.
Lastly, for fixed, finite p , ¥p'(0) = p an(O) implies the equality

1

Pl = - 2o T L) (1.33)

This is a transcendental equation whose set of solutigns for n + v
gives the spectrum of the self-adjoint extension of determined by
p . It is not difficult to see that for p positive, the solutions
n+ v are all positive and that only one solution exists between
any two consecutive integers. Similarly, we check that if some n+v
is a solution of (1.33), no (n+*M)+v with M integer may be a solution
to to the same equation. For p negative, the spectrum has both
positive and negative values, but the spacing property is the same.
Consequence: Only the p=0 and p== self-adjoint extensions of

S
IV have spectra with equally-spaced eigenvalues. Enter (1.27). The
elements of w take us between functions whose ntv differs by units
or, as Reve [0,1), whose n differs by units. When applied in
spaces determined by self-adjoint extensions of] , the elements of
w will not respect the constant p which therefore cannot be used to
classify i5reducible representations. Repeated application of R on
the p=0 V¥,(q) function will take us, at each step, between p=0 and
p== functions. A self-adjoint representation of w rquires thus the
union of these two self-adjoint extension spaces of N°>. In fact,
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when the basis functions are extend%d to all of R as even and odd
functions, we obtain the previous L“(R)space. There, in addition,
and are ngt only hermitean, but self-adjoint. The hermiticity
properties of [\° in the union of the p=0 and p = = spaces is a conse-
quence of the presence of functions which vanish at the origin, so
that the crossed-p Wronskian continues to be zero. For any other
self-adjoint extension space (determined by fixed, finite p ) this
is not so: The repeated application of the elements of w to some
function in that space will never take us back to that same space.

We thus conclude that in order that an algebra of operators
have a self-adjoint representation, it is necessary but not suffi-
cient that the operators chosen to classify the basis functions be
self-adjoint. For semisimple groups these are usually the Casimir
operators.

The case worked out above makes it unnecessar§ to further ana-
lyze L2(a,b) for a and b finite: The spectrum of NS is never
equally spaced, as moreover, it asymptotically resembles the n? -
spectrum of an impenetrable box. This argument wil] also eliminate
from consideration any other self-adjoint e tens % for the ele-
ments of the Lorentz algebra built out of 5 and ( 1_)
which are elements in the universal covering a]gebra w of w.

1.18 The Bargmann transform.

The last point in this chapter will be to relate the Fock re-
alization in Bargmann Hilbert space, Eqgs. (1.13) and (1.22), with
the Schrodinger realization in the LZ(R) Hilbert space. Both of
these are separable and hence should be unitarily equivalent. The
integral kernel A(z,q) which relates them as

§8(2)

ﬁ dq Alz,q) §(q) € B, (1.34a)

2
fla) - fce'lzl d?z Alz,q)" §8(2) € L2R),  (1.34)

may be f?u 2 Introduction) éhrough reqU|§|ng that if

§lq) €ctN_L (R is mapgeg on §°(z), then 4lq) and L_ §(q) be
mapped on RFﬁ (z) and ]"4°(z) respectively This leads to a set of
two coupled first-order dlfferential equations whose solution was gi-
ven by Bargmann (10). An equivalent solution may be found as a gene-
rating function built out of wo dense orthonormal bases: Bargmann-

normalized power functions {q > in (1.20a)- 50d) with ap = 1
for B, and the harmonlc ?7%11 ator vefungtlons {Wn n>0 In (71.29a)
normalized with c = (m for L%(R):

A (z,q)

n

nz; Lz) ¥lq)
2 -
Y T ) 3s)
n=0

——s exp [-%—(zz+q2)+/—z zql,

where we have made use of the Hermite polynomial generating function,
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CHAPTER 2; A LIE GROUP.

Out of the Heisenberg-Weyl Lie algebra of last Chapter we
shall develop the Heisenberg-Weyl Lie group through the exponential
map. The basic concepts of harmonic analysis on the group and coset
manifolds will follow. Out of these we shall find various equiv-
alent unitary irreducible representations through infinite matrices
and integral kernels.

2.1 Ado's theorem and the exponential map.

A theorem by Ado (17) states that every Lie algebra a over C
is isomorphic to some matrix algebra. That is, if we have a finite
dimensional algebra we can find a finite dimensional faithful N x N
matrix representation which will be a subalgebra of g1 (N,C). For
the Heisenberg-Weyl algebra w defined in the first chapter through
(1.1), a faithful representation and subalgebra of g1(3,C) is given
by (1.9); w is not contained in g1(2,C)."

We can use this representation in order to define the expo-
nentiol map of a into a Lie group G, which will be a subgroup of
GL(N,C), the group Bf N x N nonsingular, complex matrices. |If a has
a yector basis {Xb}grl faithfully represented by N x N matrices
{Xh}g=7’ then to &veéry element X:Eh ] thh’xk e represented by

X= Z Z=7 Xp Xh , we associate the matrix G(Xl”"’XD)= exp X,

element of GL(N,C) and faithfﬁ] analytic representation of the Lie
group G. The parameters {Xk} -1 constitute the canonical coordinate
system of G. The exponentla% map exists since -it is easy to show-
the exponential of an arbitrary N x N matrix with finite elements
is an absolutely convergent series which yields another such matrix
which is, moreover, invertible, (as det exp X=exp tn X) and sends
the zero element in a to the unit element in G. Lastly, the matrix
elements of exp X are analytic functions of the canonical coordi -
nates. They thus satisfy one last requirement of representations
of topological groups, namely that these be continuous maps of the
abstract group into a matrix subgroup of GL(N,C).

2.2. The Heisenberg-Weyl group.

The algebra w with general element represented by X6 in
(1.9) is easy to exponentiate since the matrices are nilpotent. We
have the elements of W represented by 3 x 3 matrices as

Gix,0,2) = exp c0xQb+ oP8 + 218) = exp 4 (2.1)

ST ©

X
0
Lz

g oo
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0 x 0 0 0 1 ix 0
=T+4| 0 0 |- L 0o 0] =0 1 o
]
y iz 0/ % \o xy o0 iy M
- exp Lix Q8) exp (iy P8) expl <1z + xg/21 18] (2.1
cont.)

exp (Ly Pﬁ) exp (4x Qﬁ) expl <[z - xy/?] Ié).

The last two lines go under the name of the Weyl commutation rela-
tions (18). Through introduction of the £ in the exponential map
we are assuring that self-adjoint representations of w exponentiate
to unitary representations of W.

The matrix representation (2.1) yields the composition law of
the abstract group elements g(x,y4,z) €EW as

]
9(xp,47,2919(x0,49529) = 81Xy +Xg,45%4p, 2y +2p07 Lhyxg=31951)
(2.2a)

e=g(0,0,0) , g(x,y,z)'7 = gl-x,-y,-z). (2.2b)

Associativity clearly holds. Finally, w is the Lie algebra of
W, since

3G(x,y,2z) /ox |= £ Q,3G(x,y4,2) /oy | = 4 P,3G(x,y,2)/3z |= £ ].
g=e g=e g=e
(2.3)
A1l parameters range over R , the group manifold is thus isomorphic
to R? , non-compact (Sect. 2.19) and simply connected. The centre
of W generated by I is the subgroup of elements g(0,0,z).

2.3 Functions on the group and on coset spaces.

. We consider now complex-valued functions §(g)= §(x,y,z) on
RY identified as the W manifold. We may act on this space of func-
tions with g'€ W through an action from the night

g'(R) R

la) —— ¢,

(g) = §(g g'), (2.4a)

and an action from the Le4t

g'(L) L

§lg) — fgs (g) = 4(g' g). (2.4b)
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In this rather trivial way, W becomes a L{e t&@nééqhmaiian ghoup on
the differentiable manifold M = W.

The general definition of a Lie transformation group is such
that to each pair (p,g'), p €M (a differentiable manifold), g'€ G
(a Lie group), there is ass?ciated an element pgi€ M (which may be
denoted and mean pg' or g'”~' according to convenience), such that

a) the map is differentiable
b) pe=p or ep=p 1. -] -1
c) (pajlg,= play g,) or g, (g, p) = (9,9, " p
1192 122 7 "2 1°2 :
These axioms are the result of the group axioms when M is G itself,
as above. But they also hold when M is a coset spgce: if H CG, we
consider the points of M to be the sets p-=Hg or p* =gH. There is
a standard argument to show that any two of these sets are either
disjoint or they coincide, and that they pantition G. They are
called M= H\G (1eft cosets) or MR= G/H (right cosets) respectively.
Le4t cosets map into each other under the night action of the
¥
group, i. e. pL= Hg —g—iﬁl—>(H9)g'= Hlgg')= pL'. Right cosets map
un?er the Le4t action of the group pR= gt _9_l£l) Q'—I(QH)z(Q'_IQ)Hz
R
Pt
Consider our example G=W and HQ={Q(X,0,0)}XER‘ Since

g(x,4,2z - 3 w) = g(x,0,0) glo,y,2), (2.52)

we may partition W into cosets by HQ letting g(x,0,0) range over
HQ (i. e.x over R):

!
¢q 4,2)0=1g(x, 0,01}, ep 910,4,2) = {g(x,y,z ‘%‘X”’}xeR, (2.5b)

The manifold M = H\WW is then isomorphic to Rz and its representa-
tive elements may bg labelled by g(0,y,z). The space of left cosets
M = H)\\W may be subject to transformations through the right action
of W = as
L Q(X',y',z') (R) L
cQ(y,z) —_— cQ(y,z)g(x',g’,z’)

{g(x,0,00} o5 9l0,4,2) glx',y',2")

{g(x,0,0)},ep glx",y + y', 2+ 2"+ %—x'y) (2.5¢)

{g(x,0,0)} = g(X',O,O)g(O,y+y’,z+Z’+%X’y'+X’y)

n

L ' ! 1 !
¢y (y+y', z+z' + 7 xX'y'+ x'y).
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2.4 Transitive and effective action,

The action of W on the right on M = H\W given by (2.5c) is
transitive and effective. We recall these “concepts. A group G
acts trhansitively on a manifold M when for any two points p,pE€M
there exists a g € G which maps p ,on p, i. e. p = Pg- In our
example above, given two cosets _ Q(y,z) and QQ(y,Z) the g € W
which does the job is any g(x', y-y=, z- z-1 x| y+y) ), x' € R.

A differentiable manifold where a Lie“group acts transitively
is a homogeneous space for the group. Every coset space of a Lie
group is homogeneous for it, and in fact, every homogeneous space is
a coset space for these groups (19, Chapter |l, Theorem 3.2).

The Ls0trnopy group (also called stability or Little group) of
any fixed point p € M is the set of elements h € I _C G such that
bp = p- In the preVIous paragraph, setting g y ?nd E’= z, the
isotropy group of CQ (y,z) € HQ}W is Ic(y,z) {g(x",0,x g)}x, €r.

The isotorpy group, quite clearly, may depend on the coordinates of
p. In fact, if G is transitive over M, the isotropy ?roups of any
two points in M are isomorphic and conjugate: Ip g

The action of G on M is said to be eﬁﬁeai&veglf no tpansforma—
tion in G except the identity leaves all of the points in M fixed.

That is g i Ip: {e} and is the case in the example(2.5c). It would
not have’been the case had we chosen.H7= {g(0,0, z)}z eg to define

the coset space H, \W= W/H; with cosets cy(x,y). There the non-abel-
ianity of W wou]é have been completely %ost as HI would be the
isotropy group for every coset CI(X y). It is straightforward to
show that a group G acts effectively on a coset space H\G if and on-
ly if H does not contain a normal subgroup N of G. (A normal sub -
group N <G we recall, is a subgroup of G such that gn g '=n' €N
for all n € N ; in our example H; is normal in W as well as its
centre.) The proof goes as follows : Every n € NCH C G applied to
a coset H g yields Hgn=Hn'g = Hg independently of the coset and
hence is the isotropy group for the whole coset space. Conversely,
if some n exist such that fHgn= Hg for all g, they form a subgroup
N €G ; since Hgg is a coset Hggng_] = Hg it follows that N < G.

2.5 Multiplier representations.

Normal or central subgroups cannot be used to divide the group
into coset spaces without loosing the effectiveness of the group
action on the coset manifold, but we may use them to obtain muwlti-
plier representations. This is a subject closely related to induced
representations (20, Chapters 16 and 17; 21, Chapter 9) which we will
apply to the Heinsenberg-Weyl case. The point in that, the group N
being normal in G, there is a natural action of G on N given by

n _Ji_).gng 1. n_ € N. If we have a manifold M=H\G where the action
of G is effectlge, we may build MM = N-H\G where the action of G
is no longer effective, and supplement it with a more intimate knowl-
edge of the group N , its representations in particular.

We may apply this principle to our example in considering func-
tions over the space of cosets CQ (4,z) of the special form
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A (cé(g,z)) 6(y) U‘Z x € C. (2.6)

The coset space is effectively acted upon by W as shown in
(2,5¢c), but the factorized form (2.6) and the number A in it are
r?spected, as the points(y,z) move under g(x',y',z') to (y+y',z+z'+

x'y'"+x'y). This induces a transformation of the functions on y
(zhnctlons on Hy HQ}W)

L oglxez)

6] - §s (4= § (y+y'Yexp [ar (2! + x'y'+x'y)]

(2.7)

The factor u(y,g)= g is called a multiplien factor. It ig a re-
sult of function theory that there is no proper subspace of L¢(R)
which is invariant under the action of all translation and multi-
plication-by-exponential operators. The action of (2.7) is thus irre-
ducible on L*(R), since it cannot be broken into invariant proper
subspaces.

2.6 Infinitessimal generators in 3, 2 and 1 variable.

We have seen the action of W on three variable functions on W
in (2.4), on two-variable functions on H\\IU in (2.5), and on one-
variable functions with multiplier in (2Q6) (2.7) - We shall show
what this means in terms of the Lie algebra generator realization.
We consider transformations g(&x',8y",8z') near to the group inden-
tity g(0,0,0) and collect Taylor expansion terms to first order in
§ , so that

§lp) Seglpg =144 Lox' Qo PMeoz T +0 (62116100 (2.8)

The Cﬁordinates of p € M may be three, two or one, so that @M,
and H will be the generator of the group of transformations on
that manifold.
Setting (2.2) into the action from the right in the 3-variable
case we obtain

W(R) . 1 W(R)_ . 1 W(R) .
Q= -ils#7 90,), P =-¢(ay— 7"32)’[[ = - A3, (2.9a)
A similar procedure for the action from the left (2.4b) yields

gt ilo - % ys,), P - (3, J[xaz), Hw“)ugaz. (2.9b)

The generators (2.9a) commute with those in (2.9b). From (2.5c),for
H@w we find
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Q = -dy3, P =-/(:3y, Jif =43 _. (2.9¢)

Clearly, we can repeat this procedure for H \W, W/HQ and W/H . Final-
ly, for (2.7) P P

oM Ay, P m=-¢'ay .| oy, (2.9d)

The last set of generators of w constitute the Schrddinger realiza-
tion of w given in (1.24a) for Ay=q. We can identify A with h ,
which is assigned a particular value by Nature.

Perhaps the most striking feature of the generators (2.9d)
stemming from the multiplier action (2.7) is that Sophus Lie would
not have recognized them as generators of a Lie algebra (22). He
considered Lie transformation groups, where groups act effectively
on manifolds, so his generators are all and only first-order differ-
ential operators (with coefficients which are functions of the. coor-
dinates). Generators with zeroth order operators, as mk and [[* abowe,
stem from multiplier group action (23).

Lie algebras of operators of order higher that first are inte-
resting in physics. The associated Lie groups are generally groups
of integral transforms (12, 13, 14 Part 4), rather than manifold
mappings of the type (2.4).

2.7 On representations of groups on homogeneous spaces.

A representation p of a group G on a vector space V s
defined in a very similar way as those of an algebra, namely, as a
homomorphism p : G —»GL(V) from the group G into the group GL(V)
of linear operators on . The homomophism means that p(g )p(g ) =
p(g g, ) and p(e) = 1. One is generally interested in the case when
v |s a separable Hilbert space and when the representation is
strongly continuous, i. e. lpol(gl§ - p(g J§l >0 as g-g

The physicists' experience with compact groups, where the V are
finite-dimensional, leads one to search for matrix representations
which may be of infinite dimension, or for their generalizatlgns as
integral kernels. A finite-dimensional representation on V=RY is
already provided by (2.1), although it is non-unitary. An appropiate
Hilbert space may be constructed for functions of three, two or one
variable on which we defined the action of W.

Infinite-dimensional matrix representations may be obtained if
we give a complete denumerable basis for the separable Hilbert

space, {¥ (g)} , and bunld the matrix p(g)— D, (g)] with §l
ments Dnn'(g) (W ¥ , ), the inner product be'thg that of LZ|
and the group actioh glvgn by (2.7). Similarly, integral-kernel
representations may be obtained through working with a Dirac-ortho-

normal basis for the space, {yx (y)}v € 4, where 4 is some index in-
terval There, the integral kernel$ are ’olg)= HD ,(g)|| with
,(9) (X 2 Xyt

The one vaglable LZ(R) space the is manifestly mapped onto
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itself by W, |Its chqice is dictated oyer any other Lz(a,b) by the
fact that the group action (2.7) includes translations in the argu-
ment Y , so that only spaces of periodic functions gf period b-a
may be contemplated, but the exponential factor et*X'Y does not res-
pect this periodicity over any finite interval.

2.8 The Q-subgroup basis.

Let us start first with the integral-kernel representations
affor?ed by the normalized Dirac eigenbasis of the 'position' opera-
tor Q'*

(Dmxz(yh q x?{(y) , 4 XER, (2.10a)

1/2 5(

xg(y) = || - Ay ). (2.10b)

Then, the representation of (W labelled by x € R in the {] -eigen-

basis is

A (Q) ] ] ] - A A
qu, (glx',y',z")) (xq, xq,g)

©

/ dy x;w) Xq ,(y+y )explir(z' +1 x'y'+ x'y)] (2.11)

-

s (q—q’ + )‘g') exp /('_D\(Z'-i-%x'y’).,. qu ]’

The representation property holds:

/ dq' Dgém (g4 DAEQ,). (g,) = D”Q) (319,), (2.12)

and DX(Q)(Q) §(g-q') is the unit operator. The strong continuity
of 1% (2. 11), meaning the strong continuity of (2.7) is easily
ascertained. The subgroup g(x',0,0) is represented by a 'diagonal’
integral kernel (i. e. one with a factor of 8(g-q')). This represen-
tation diagonalizes the subgroup generated by Q.

A representation of the operators in the Lie algebra w and W
through integral kernels may be obtained subjecting the integral
kernel (2.11) to the limiting procedure in (2.8):

M Ly A(Q) - - -
% ¢ Dyr oo talx’y', 20N, = @ 8la-q'), (2.13a)
A = -y 02 (gl ), 006t (e, (213)

q q' y' “qq'
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;MO

A Q)
qq' b

7 q (glx',y',z"))] =X 68lg-¢"). (2.13¢)

g=e

- 49
7!

These integral kernels represent the differential operators of the
Schrddinger realization on the space of differentiable functions in
L4(R), a space dense in the latter.

2.9 The P -subgroup basis.

A second generalized Dirac(k?sis of LZ(R) is provided by the

generalized eigenfuctions of [P in (2.9c):
me(; (y) = p x; (), p, A ER, (2.1ka)
i; (y) = (2m) 7112 %P9, (2.14b)
The representation thus obtained is
vpx;?) (glx',y",2") = (T o3 )
=6 (p-p'-ax") axp&'[k(zw%x'y’) +p'y'l (2.15)

~ v oA Ay oA (Q) AA
i/im dq.[; dq (Xp ,xq) qu, (g)(XQ’;XP')'

It satisfies the representation property (2.12), and diagonalizes the
subgroup g(O,y,O;(P?enerated by P. The last ]iR?an Eq. (2.15)

shows that the D' (g) are equivalent to the D7 ' (g) in (2.1 }0)
since they are bggically the double Fourier tran€forms of the qu? (g)

in (2.11), as (XA’ ix) = (2ﬂ|A])_1/2 equ/A is the Fourier trans-
form kernel. The ngﬂﬂaﬁ coefficients between the two eigenbases
(2.10) and (2.14) yield the tranformation kernel between the two re-
presentations (2.11) and (2.15). We shall return to this point
below when we comment on the unitarity and completeness of the represen-
tation set. Meanwhile, let us produce further representations equiva
lent to the above ones.

The Lie algebra representation obtained from (2.15) may be
written as

MPY _ o oAMPL o AP
Qp gy = % As' (p-p'), Pppr ps (p-p'), Ipp' AS(p-p')  (2.16)

which, again, is only the Fourier transform of the former.
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2.10 The quantum free-fall nonsubgroup basis.

Further generalized bases of LZ(R), unrelated to subgroups of W
may be produced as eigenbases of self-adjoint operators in the envel-
oping algebra of w. Quantum Mechanics has a large supply of such

operators. Let us start with the free-fall Schr8dinger Hamiltonian
and its Dirac-orthonormal eigenfunctions:

Hl g =1 1 P o™ 2y = and (), o« €R (2.17a)

A (g) (2|n]” 7/2 1/3 Ai([mm (y- a/A)), (2.17b)

where Ai(z) is the Airy function of the first kind (14, subsect.

9.5.3). Then, a calculation aided by the Fourier transform shows
that

D)\({.) (g(x',g’,z'))= e-iﬂ/4(2‘ﬂX')7/z |)\|'7
oo

(2.18)
5 expdxz'+%x’(a+a') 4+ ;x’(y,+ o ;\(x' )2 _ ;_4)\2)(:3 1.

Rather tediously, we can verify that the analogue of the representa-
tion property (2.12) holds. Using

Lim, e 4 20e) V2 oxp 4162 72a%) = |a|sls), (2.19)

e > 0*

we can show that (2.18) is indeed &(a-a’) for g=e , as well as some
further properties which will be seen later. (If the powers of )
throughout produce any distress, the reader may check that "units"
of X are properly given if the arguments of transcendental functions
are to be dimensionless, while wavefunctions have units of
(Lenght)=1/2 and integral kernels of (Lenght)~!.

The task of finding the Lie algebra of integral kernels now
takes us to find through (2.19) and its derivatives with respect to
5, as in (2.13), the integral kernel representations:

QA£§1 %~X26"(a-a')+a6(a—a'), (2.20a)
P L s (e, (2.20b)
12;?) = A6 (a-a'). (2.20¢)
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Note that, indeed,

(1o Q)W“ - o §le-a'] (2.20d)

is a diagonal number integral kernel, as it ought to be from (2.17a).

2.11 The quantum harmonic oscillator basis.

A most convenient denumerable orthonormal basis is provided by
the eigenfunctions of the quantum harmonic oscillator Hamiltonian

2 2
H g = LopN e g™ Ry = e v, 2a21a)
2
Ay = et R Sy )1y (2.21b)
n=20,1, 2,.

In this basis we must calculate

o)

DML) (g(x',y",2")) / dw (y)* “/ yry') expl ix(z'+ X'WW'H,
(2.22a)
which may be done through mu]tlplylng (2.19a) b 2(”+” )/2( ’)-I/Zx

x 5L , summing over n and n' so as to use the known generating
functions for the Hermite polynomials (16, Eq. 22.9.17), integrating,
and finally using the generating function (3, Eq. (2.&2))

explab+ac-bd) = Z Z L‘” R ed)d® T

n=0 n=9
in order to separate powers of 4 and t. Setting a= vZs, b=VZT

and c=(1A|/2)1/2 (-y'+ix') = d* we obtain the result
A(h)(g(x

DA\ ',z )= exp Alizs Tix'2e g A0 (/)7

(nn)(

n |Al[x’2 + U'Z]),

N A 0 L

(2.22b)
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valid for n >n' , Similarly, for a= V2%, b= /74 and

e= (|A|/2)1/2 (y# ix)= d* we obtain

A(h)

P (g, 2= e m’z+§[x'2+g'21)(n:/n'z)’/z %

’_ " _
Y AN P L R I Y| UL T
(2.22¢)
valid for n<n'.
The representation properties of composition D(g ) D(g )=Dl(g 2)
may be shown rather tediously to be valid -in fact, is rather o
be used as a proof of the addition theorem
E nn,(g,) D v P (Qz) = D (9192) (2-23)

n =0

involving Laguerre polynomials (24, Sects. 1.4 and 5.2). The Lie
algebra may be found obtaining derivatives with respect to the group
parameters and valuating at the group identity as in (2.13). Again
we find the algebra, but given by the half-infinite matrices (1.16)
in the linear combinations (1.3a). The defining number operator
(1.24b)-(2.21) is in this representation also diagonal, with values
[x]|(n+ 1/2) on the diagonal.

2.12 The bilateral Mellin eigenbasis.

Not all representatlon bases must come from subgroup of Hamil-
tonian-type (1 f) + V (Q)) self-adjoint operators; the representing
matrices/kerné?s may have both continuous and discrete rows and col-
umns. Consider as a non-standard example the operator

Du (o) - 5 QPIpPLpPghly 2 gy -

ap

- - Dy o Pk () = o wd L),
(2.24a)
- l.+ LD/A
uzp (y) = (Zw)—l/Z '8 : p ER, o=+, (2.2hb)

where we have used the 'cut' power-functions
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g’y>0 07y>0
y, = { y_ = { (2.2k¢c)

0, y<o0 -y, y<U0.

The representation kernels are now 2 x 2 matrices (rows and col-
ums labelled by o =t ) with integral kernel elements. We must consi-
der the four pieces (o =t,o'= #)for y' 20 and y' <0 separately.

In constructing the kernels through inner products of (2.24b) we
obtain integral representations for the confluent hypergeometric
functions M (a,c,z) and Ula,c, z) (16, Egs. 13.2.1 and 13.2.5):

orpe
o]

)\D ] ! ! - i
Dcf’,(cfzpy(g(z ,y',z')) =(2n) ]/ dy ucp(y)*u (y+y') x

x exp [An(z"+x" y'/2 +x"y)]

= (zw)_lexp [ix(z'+ x"y'/2] KSZ: (x',y"),

(2.25a)

K5, g > 00 = T(1/2 - dpfa) g et ol
x U(T1/2-4 o/x,1+L (p'-p1/x, -4Ax"y'). (2. 25}

K, (x',y">0) = - oMlo=p" /2 XY S >0,
o PP

(2.25¢)
K2 (xt,yr <o) = MY @ (0, -yt >0, (2.25d)
pp! -p; .

K2 (x, g > 0= - PP VN L0 £ 0t ) T/ - i o/A) x

x LT+ i lpt-p) /)T el 0

x M(1/2- Lo /A, 144 (0'=0 ) /A, ~AAX"y"), (2.25e)
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K™, oy <) = ‘ K -y > .

- (x', y Q) = e wgl (x",-y 0), (2.25f)
+

Kppy (x', y'=0) =0. (2.259g)

The 2 x 2 matrix is lower-triangular for y' > 0, and upper-trian-
gular for y' <0 the first and second rows and columns are labelled
by o =+ and o=- respectively). it should be interes-
ting to verify that the group representation composition and inden-
tity properties hold for the integral kernel (2.25). Differentia-
ting with respect to the group parameters should yield the integral
Oéfv), Pgé?é,p, and Izé?é,p. = AGOO,G(p-p'). These
will constitute yet another form for the Heisenberg-Weyl algebra
such that 1/2(QP+ PQ) js the number operator & ,p8(p-p'). Any self-
adjoint operator in L°(R) can be seen thus to’Rave associated to it
an eigenbasis which determines a corresponding representation. The
first two cases we gave had Q and P for number operators. These
determine that the subgroups g(x,0,0) and g(0,y,0), respectively,

be represented by purely diagonal_jntegral kernels (¢.f. Eqs. (2.11)
and (2.15), these are &8(g-¢') e* and §(p-p')e*®Y | and hence the
corresponding representations are said to be feduced or classified
according to a subgroup.

The other three cases seen involve nonsubgroup bases, as the
corresponding number operator was given by two Schr8dinger Hamilto-
nians (£ and h cases) or by the dilatation generator [[J. In these
cases, the representation is given by matrices/kernels which are not
diagonal in any subgroup, as suggested by the absence of Dirac 8's
in (2.18) and (2.25). They are truly integral kernel representations
of the group.

kernels for Q

2.13 Unitary irreducible representations.

We now define and verify the unitarity and irreducibility of the
representations obtained in (2.11) (Q), (2.14)(P), (2.18) (£),(2.22)
(?) and (2.25) (D). In each of these cases we chose a basis for
L4 (R) through a self-adjoint operator and the bases are therefore

orthonormal. The Heisenberg-Weyl algebra generators are self-adjoint
in their Schrddinger realization in L“(R), and their exponentiated
group operators representing (2.1) unditary. A unitary operator
(WUlg)é=6, such that(l) (g)§, ([(glh)l= (§,h) in an orthonormal basis
is reprgsented by a unitary matrix or integral kernel:
1 *

) A | - (2.26)

uu'(g) =1 Pury 1
where 1t € R for cases Q, Pand £ , u€1{0,7,2,...} for case h and

u= (o,p), o=t, o € R for case D. For A real, this is indeed the
case, manifestly, for cases P, Q and £. In the latter care has to
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be taken to define the phase of the parameters in gﬁl(x’,y’z’) =
gl=x",~y",~z'). The matrix for the h -case also satisfies (2.26)
with both (2,24b) and (2.24c) required. The last case, D, can also
be seen from (2.25) using the pairs (b,d), (c,d) and (§,g9) which
correspond under the adjunction of the Z x 2 matrix. In all of
these matrices no block-decomposition occurs and the r%presentations
are in fact irreducible. This is to be expected, as L“(R) itself is
irreducible under (2.7).

2.14 Equivalence of representations.

By equivalence of two representations 9(7)(g)and Q(Z)(glz?f a
group G , associated to given number operators H(7) and H ,Zwe
mean that there exist (fixed) invertible transformations C of L“(R)
such that the two representations are mapped into each other as

olig) = coigr 7, wge g (2.272)

(1) vy pll) (2), . (2) .
Nt (g)=1 Dw,(g)ll , D' g)= |l Dpp,(g)ll , C= | Cupu , (2.27b)

where the set of values which u can take is the generalized spec-

trum of ﬂ{(l) in LZ(R),and p in that of }{(2) in LZ(R):

pl? -yl 8o ey L eo e (2270

o

I f H(I), H(Z) € a then C in (2.27c) is a (possibly exterior)
automorphism of the algebra, mapping one :subgroup basis into another
subgroup basis. An example is provided by the two subgroup represen-
tations denated by Q and P , as we shall see below.

If the ﬂi(.) are self-adjoint and have the same spectrum, C will

be a unitary transformation of LZ(R), i.e. Q-Z = QT. This is the
for the transformation connecting the Q and P representations
-the Fourier transform- which in fact maps L“(R] unitarily onto it-

self. There Ck(q,p)= (2m) 12 exp(Lpg/A) is the transformation
kernel. The 0- and {-representations werz defined through eigen-
bases of the operators ] in (2.10a) and H® in (2.17a), and have
the same spectrum. The transformation kernel C is then

A -1/2
C = AT ) = A

Go - Xg ol 7
i. e. the Airy transform (14, Sect. 8.5.3), which as expected is
unitary in L“(R). This is a point transformation, where to the op-
erator representing O we may add any function of its canonically
conjugate P, as Q -+ Q + {(P), while leaving P invariant. Thus

A
A (g, (2.28)
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4

7 (H) = %qu p - 1/ dg'[2(H(g,p) V(g1 /2
q

The angle variable is (26, p. 292) -with a minus sign-

w (H,T) = - (3H/3J)T. (2.31b)
One can depart slightly from the usual notation: Since 9y

are the libration endpoints where V(q,) = H (while otherwise
H <V(q)), the integral (2.31a) is positive. We defined thus

J=laql, w=pal/la, (2.31¢)

where & and ﬁ is a canonically conjugate pair of variables rela-
ted to ¢ and p through a canonical transformation.

2.16 Quantum canonical transformations and discrete Hamiltonian
spectra.

When Quantum mechanics tries to follow the methods of solution
outlined above, the first problem it encounters is that the opera-
tors H and T or J and w cannot be the generators -together
with T- of a Heisenberg-Weyl algebra, when the spectrum of either of
them is lower bound and/or discrete, and I a multiple of the iden-
tity operator. Discrete spectra are disallowed by thg following
contradiction: Let ¢ (y) be the eigenfunctions of a (7 with eiggn-
values m € Z. Then, if there exists a conjugate companion [P’ in
a Heisenberg-Weyl algebra (1.1), the (m, m') element of the commu-
tation relation would be

7 p? ? 0? n? a?
(6, 10", P16 ,0 =06, 10 P -P Q19¢,) -

= (0" 9, P’ 9,008, PTQ° 6 )=tnm) (6, P70

(2.32a)
But on the other hand,

7 p? . ? ,
(0,0 @ 5 P71 0,00 =< (8, I°90,) =45 0. (2.320)

For m # m' , (¢m, H)? ¢m,) is zero, while for m = m'" it is un-
defined. This is a very old and standard argument, dating back to
Jordan in 1927 (27, Postulate D on p. 812, and statement of p. 819,
28 p. 2; 29-31). The same commutation relation also cannot be satis-
fied by any two bounded operators (32, Sect. 6.1.1).
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2.17 Quantum canonical transformation to action and angle yaria-
bles.

In the teeth of the above remarks, Moshinsky and Seligman (33-
35) have looked at the,quantum mechanical version of the canonical
transformation (q,p)—>(q,p). The first observation is that even
in classical mechanics, this transformation is generally not bijec-
tive, i. e. the classical phase space motion may be subject to a
group of transformations which leave the action-angle variables in-
variant, as the projection of the Riemann surface for a multivalued
function over the complex plane, under exchange of sheets. This
ambiguity group A is therefore an object which appears already
in classical mechanics. Quantizing the system now means replacing

q and p for self-adjoint operators D and in soge appropiate
representation, say, the Schrddinger rgpresengatpgn on L?(R), while

q and p are replaced by operators () and [P ... in what space?
If we have constraining potentials giving rise to a closed classi-
cal orbit in phase space and were to propose simply L (R), the spec-
trum of_,m would be lower-bound and discrete. In what space may we
define () such that its spectrum be R, as it is for @ ?  This is
of interest since we desire that the quantum canonical transforma-
tion be unitary. As we have also the ambiguity group, we may build

a space LZ(R,A) = E:G L? (R) consisting of the ordinary LZ(R)
summed with itself oﬁce or gvery element g of the ambiguity group,
so as to obtain discrete and perhaps infinite matrices with integral
kernel elements. This is the space where n may act so as to have
R for its spectrum, and here the canonical transformation to the
original L“(R) may be bijective and unitary.

The space LZ(E,A) is then classified in a way where linear com-
binations of the L“(R) spaces are taken so as to build the unitary
irreducible represgntations of the ambiguity group A; in this way
one defines an ambiguity 4pin. Some lower-bound discrete spectra
allow for a dihedral ambiguity group of rotations by multiples of
the period,and inversions. The corresponding ambiguity spin is a
pair of numbers: a continuous one « € [0,1) and a sign 0. The

space L? is thus written as d « §;+ L2 (R).
= o—+ K, (0]

The operators () found be Moshinsky and Seligman (33) were
such that they are a sum of a Hamiltonian operator with a lower
bound and discrete spectrum, fimes the sign o pfus the representa-
tion index k. In all, thus, the spectrum of {] is R. Transform
kernels are found which represent the above quantum canonical trans-
formation.

2.18 Quantum mechanics on a continuous compact space.

There are other approaches to the problem of making the Hamil-
tonian of a contraining quantum potential to fit into a Heisenberg-
Weyl algebra (3, Refs. 138-154). One of ;hem follows a suggestion
by Weyl (36) introducing a mixed group W~ (3, Sect. VI): It is a
proper subgroup of W with the composition rule (2.2), and defined
through
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* - \
W= = {glxypzl € W] x-= n, /M, n, € 1;
(2.33)
Yy =ymod L; z=2zmod L/ZM }.
It is a Lie group of transformations on the circle as in (2.7),

where X s a discrete group coordinate for the subgroup elements
Hp while the subgroup manifold of H, is a circle. For the latter,

the infinitessimal generator |P = -4 has, discrete eigenvalues
p=n 05, 1 € Z, Py = 2r/L. The former group H, does not have an
infinitesSimal genéerator. It has a f{nite genefator instead: multi-

plication by etY . The eigenvalues of the HI generator are similar-
ly quantized to A= X, iy = Xo* 4nM/L = 2 Py M. In this model

for Quantum mechanics on compact spaces one way work with a properly
defined enveloping algebra, implement quantization procedures, clas-
sical limits and canonical transformations. Furthermore, as will be
brought out in Chapter 3, in connection with the 2+1 Lorehtz group,
one can define a nonlocal inner product on the circle so that the
operator -Ad/dy have a lower-bound spectrum (37). On the other
hand, one does nof have a self-adjoint 'position' operator, and has
in effect quantized on the Lorentz group level.

2.19 Left- and right-invariant Haar measure.

Having gained familiarity with the Heisenberg-Weyl algebra and
group, we may state what a noncompact group is, and what its repre-
sentations are like (20, Sect. 2.3).

Consider a Lie group G with a finite number D of continuous

parameters {Xh}z=7’ XERC RD, and functions §(X) over G . A pos-
itive Radon measure is a positive linear form

u(ﬁ)=fgdu(g)6(g)=/6 w(X)dPX4(X) = 0 (2.34)

+
on the space C_ (G) of continuous nonnegative functions § on G with
support on a finite-radius sphere. The £eft (resp. night) invariant
Haar measure is a positive Radon measure which is left (resp. right)
invariant under the group action (2.4):

uL(ﬁ) = uL(ﬁL,) (nesp. uR(ﬁ) = pR(ﬁR,) ), for all g' € G. A theorem
may be proven (38, Sect. IV-15): Egery Lie group has a unique left
(and right) invariant Haar measure, up to multiplication by positive
constants.

If we fix the multiplicative constant, we may define the vol-
ume of the group G, vol G, to be the limit of the sequence of
values of (2.34) when § is taken as a sequence of characteristic
functions over any nested growing sequence of group subsets. This is
(2.34) for 4(g)=1 when it exists. |If the volume of G is a finite
number, the group is said to be compact. |If it is not finite, the
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group is said to be ngncompact.
Let uL(ﬁ) be a given left Haar measure. We can produce a new
left Haar measure through acting on the night of the argument with

a fixed group element: uL (§) = uL(6R ). But since right and left
actions commute, i. e. ¢ (62”)5,(9?9 6(91_199n)=(6;y)§"(g), it
L R . .
follows that “go(ﬁg’): uL((ﬁg )é,)= uL(6g0)= ugo(ﬁ), so ugo is
also a left-invariant measure. By the uniqueness theorem, we con-

clude that ug (4) = A(go)uL(ﬁ), i. e. uL

may at most differ by a
9o

constant A(907 from uL.

2.20 Unimodular groups.

A modular function over G is a positive function A:_f3——> R
such that Algg') = Alg)a(g'). This implies Ale)=1 and Alg ")=1/Alg).
The constantsA(g.) seen above are modular functions, as can be veri-
fied acting with two elements from the right on the left-invariant
measure. If A(g )=1 for all g,€ G, then the left-invariant Haar
measure is also invariant under right action, so that the left- and
right-invariant measures are the same. Such groups are called uni-
modular.

The difference between right and left Haar measures never ap-
pears in compact group theory: Every compact group is unimodular.
Proof: If G is compact, §(X)=1 is in C_(G) and we may normalize
U~ through asking for pf7)=1. The modular function of the group is
then Alg)= Alg)ul(T)=u(1")=u(T)=1.

Abelian groups -compact or noncompact- are unimodular, since
their left and right actions are the same. Noncompact groups may be
non-unimodular, an example of this is the two-parameter solvable
group of linear transformations x —> X' = a.x*a, seen in (39, p.
316). Noncompact groups which axe unimodular are the following:

(a) all abelian groups, (b) all semisimple groups, (c) all connected
nilpotent groups -as the Heisenberg-Weyl group, (d) Lie groups for
which the range of values of modular functions is compact. (e) di-
rect products of unimodular groups.

2.21 The Haar measure and weight functions.

When the composition functions for the parameters of a group,
are known, it is not difficult to build a weight function for a left-
invariant Haar measure. Right-invariant Haar measjyireg are very simi=
lar and will be given below. We require ub(§)= u"(4>) in (2.34).
This implies 9o

whigl ) =/duL(g)mg"g)=f dutlg,g)§la)= u(g).  (2.35a)
9o G o J.G

Since g.G =G, we need duL(gog)=duL(g) for all g € G. |If the coordi-
nates of g are X and those of g’=gog are X' then the weight func-
tion and parameter volume element must satisfy
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aX'(g.g(X))
oL 00X = WX X=X (-———75%——~—9 X (2.35b)

where J(3:/0°)= J(g,,X) is the transformation Jpcobian. If the
group identity is at X=(0 so that g(()=e¢, and w (() i a fixed num-
ber, (2.35b) gives us the appropiate weight function w (X') at g'=goz

L L aX" (g,9(X)) -1
w (X') = w (0 [J (—=—)] . (2.36a)
o i,

This is the left-invariant weight function for the parameter volume
element at g’=go, where the parameters are X' and which is invariant
under left group translation.

A similar argument for right-invariant integration, measures and
Jacobian leads to

<1 o
xX'(g(X)g, )
9 ] (2.36b)

SRIX) = WR(0) [J (—r—|
X=0

as the appropiate right-invariant weight function at g'=g_1 where
the parameters are X'. b

The measure (2.35) is also invariant under the inversion involu-
tion g' — g' ' of the group manifold, (20, p. 69, Prop. 3).

The Heisenberg-Weyl group W, being connected and nilponent, is
unimodular. Hence, right and left invariant measures are the same.
The Jacobian in (2.36) may be computed from the group composition
functions (2.2) for g'(X')=g,(Xy)g(X) and g"(X") =g(X)g0(XO)_ 3

X, * XY=yt oy, 2=z zk(y X - x oyl /2 (2.37a)

X" = x - X, y" = Y=Y, z" = z - z, - (yxo - xgo)/Z . (2.37b)

The Jacobians have 1's on the diagonal and are triangular, therefore
the determinants are unity. Normalizing w(()J= 1, the invariant Haar
measure for W s

du(X) = dx dy dz. (2.38)
The Heisenberg-Weyl group is very close to the abelian R3 space. The
'twist’ which makes the third parameter compose in a non-abelian way,

is relatively minor.

2.22 Completeness of a set of representations.

We would like to insist on the distinction between a representa-
tion and its subgroup (or nonsubgroup) reduction. Different examples
of the latter have been given in the first part of this Chapter, and
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refer to the row-column classification through the choice of basis
for the homogeneous space of the group. Since we saw they are all
unitarily equivalent, we can refer_ to any one fixed classification
through a given basis in writing Dy,1(g). The (in general, collec-
tive) indices 4« and #'are eigenvalues of a (maximal set of mutually
commuting) operator(s) in the right- and left-action enveloping
algebra of the group, and self-adjoint under the inner product defi-
ned by the Haar measure over G (i.e. in a Hilbert space L“(G)). The
eigenvalues may be discrete, continuous or mixed,and their range is
assumed to resolve degeneracy completely. These representations
compose as (2.23) in the discrete case, and as (2.12) in the contin-
uous one. We shall write § «++ fon Z =+ or Jdr.... The hepresen-
ftation index A (which in"general i3 a collectlive index) is usually
given as eigenvalue(s) of a (maximal set of algebraically independent)
right and left invariant ogerator(s) in the centre of the enveloping
algebra, self-adjoint in L4(G). The range of the (genera]lykcollﬁc-
tive) representation index A(X={A1,Az,...,AN}) is a subset G of R .
In benign cases it is a measurable space, and a Plancherel measure
and weight function dp(A)=v(A)d\ exists.

For W , the centre of the enveloping algebras (2.9a) and (2.9b)

is I W(R)=—La/az =-1 W(L), so this generator takes the place of the
Casimir operator. The eigenvalue of -{3/3z provides the representa-
tion label A € R.

The difficulty in treating the representations of noncompact
groups vis-a-vis the same task for compact groups is the same as that
of Fourier integral transforms over Fourier series. The space being
noncompact in the former case will allow continuous spectra for cer-
tain operators whose eigenvectors are normalizable only in the Dirac
sense. Casimir operators may also have mi{xed (continuous and dis-
crete) spectra. In the W case, the difficulties will be handled
through Fourier transform techniques. In general one has to invoke
rigged Hilbert spaces (20, Chapter 14) and pay close attention to
functional analysis arguments (40, 41). The problem for compact
group are less, as there all unitary representations are finite di-
mensional and representations come in discrete series.

2.23 The orthogonality and completeness relations for the unitary
irreducible representation matrix elements.

For unimodular groups (with some mild conditions), we can gener-
a]ly assert that the unitary irreducible representation matrices
th;(g) are a generali&ed orthonormal set of functions over G, under
the inner product of L“(G) given by the invariant Haar integral.

We denote the latter through S - jbdu(g).., in order to include

the finite and compact cases in our formulae. We may write

A A A

A _ *
0),,, 0l QGSG (0},,(a)1" 0, ,,(g)

- 1)
= 65 (A, ") S vinSr sme ? o (2.39)




41

where § means a collective Kronecker delta in discrete indices,

#, 1
(which may’be generalized to a Dirac §'s over a continuous pair),
8.(A,A") should play the role of the Kronecker or Dirac &'s for

A,A'" € G, (G being endowed with a Plancherel measure and weight func-
tion dp(A)= v(A)d(A). Equation (2.39) is not hard to prove through
integration by parts with the operators which determine the represen-
tation and row/column labels. Most interesting is the statement that

the Did'(g) are, moreover, complete in the LZ(G) Hilbert space with

inner product (*,*) .. This means that we may define an inner pro-
duct in G through an integration é@.'=.f” do(A).., which may contain
N=¢

a sum, if the Plancherel measure is a point measure in some domain.
We have

( Dlg,), D (g,))g - ég TR [D*(g; /" D Mgy

= (SG (glggz) » (2,1408)

where the trace of a product of matrices is

o MW= D M N, (2.40b)

st
For integral kernels an integral over % and, 4' is used. Equation
(2.40a) defines an inner product between matrix or integral kernel
functions over A € G. The completion of this space of func-
tions with finite norm defines a Hilbert space L“(G). The 56(91'92)
is a Kronecker or Dirac delta for discrete or continuous groups:

GG(gl,gz)=0 for 9 # gy, and under sum or integration, it satisfies

é §lalsgla,g') = §lg’) (2.41a)

for any continuous function §(g). Similarly, 8.(A,A") is such that
S FOJ s.xa') = Fa') (2.41b)
A6 ¢

for continuous matrices or integral kernel functions F of » € G. The
defining properties (2.41) imply a relation between weight functions
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and 6's, as

wlg(X))65lalX),a(X" 1) = L1X-X"), (2.42a)

u(A) 8. (A, A7) = §(a-a"). (2.542b)
G

In the case of compact groups the Plancherel measure is a point
measure and  S,.- = X dim(\)/voL G** where dim(A) is the dimension

of the A unitégg irreducible representation, and vol G is the volume
of the group. The corresponding §. is thus a Kronecker SA (A, A1) =

Gkkv vol G/dim(A) . G G

For compact groups, the Peter-Weyl theorem (20, Sect. 7.2, 42)
supports the proof of (2.39)-(2.40). For finite groups this can be
found in (39, Eqs. (3.143), completeness appears only as (3.178)).
The general case of unimodular noncompact groups appears and is re-
ferenced to in Barut and Raczka's book (20, Chapter 14).

2.24 The Heisenberg-Weyl case.

We return to OUK example W and choose for simplicity the Q
-eigenbasis where (glx,y,2z)) is given by (2.11). The Haar mea-
sure is given by (2. qq38) with unit weight function and hence §g in
(2.42a) is an ordinary Dirac & in X, y and z. We do not yet know
the unitary irreducible representation space W, but since » € R, we
want to determine if R is or acts as the full representation space.

To this end we have avail to (2.39). |If R were not W, we would not
get a Dirac in this variable. We perform

(01 Do .u)w/d’f dy/dz (8(q-q"+2y)exp & [A[z+xy/2)+xq] } x

x{8(g"-¢" +A'y) exp 4 [N\ (z+xy/2)+xq"} }=

00

=([Afar l)_Id('(q-q’)/k -(q"-¢"")/x) / dz exp < [ (A-1")z] x

<)

X/ dx exp [ (-4 x) ({(x"-x) (¢"-¢"") /2x+(q-q¢"))] = (2.43)

= 4ﬂ2|>\|_16()\~>\’)6(q-q”)6(q'—q”')= S, (A,A')c‘s(q-q")é(q’-q"')-
W

So we do, indeed, obtain a Dirac §&. From (2.42b), the Plancherel
measure for W is
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do(A)= (|A|/4n2)‘ dx , A €R. (2.45)

Completeness is verified as

; 72 -1 A * 5
(Dlg;), Diggl)y, = (4n°) Mdr [ do | dq' D) () Dy, (gy)
R R R

= 6(X1_x2)6(£/1_yz)6(21'22) = ﬁw(97,92). (245)

The orthogonality and completeness relations (2.43) and (2.45) are
valid whatever subgroup or nonsubgroup row/column classification we
choose. Hence, orthogonality and completeness relations similar to
these follow not only for (2.11), but for (2.15), (2.18), (2.22) and
(2.25).

2.25 Harmonic analysis on a group.

Having the complete and orthonormal generalized basis DﬁﬂJ(g)
over G allows us to perform haunonic analysis over the manifold G,
expressing any function within a wide class {(g) over G , through
a series or integral over these functions, as

TEIC SR DU N RNt (2.462)

X EG n'n!

The 'linear combination coefficients' 6hﬁi(x) can be obtained through
!

performing the G -inner product of (2.46a) with Dip&un(g), exchanging

g with ‘% %ﬁ! and using (2.39) so as to obtain

5 . A
6,0 (V) = Q§G §la) 0, (g). (2..46b)

We can think of F(A) as a matrix- or integral-kernel-valued function
on G and write (2.46) as

flal = § TrID@F1 =0 F)., (2.47)
A EG G

c A A*

Fo = S ta) DMel = 0, Fg. (2.47b)

g6
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Finally, the Parseval relation

*
(F,Hg = S §lg) hig)=

S
3<6 (2.48)

" * A " & & iy

= S D0 b kg - § RIFFMAMINI-EH),
Y=y \EG B

holds, telling us that the harmonic transform (2.47) is unitary be-

tween LZ(G) and LZ(C).

The subject of orthogonal and complete sets of functions over

G and G spaces extends to all coset spaces NG or G/H together
with right- or left-invariant measures on these, and a corresponding

reduction in the row- and column-indices (43). It also extends to
other, more general equivalence sets on the group called bilateral
classes (4h4). Rather than delve on the general theory, we shall give
some results for the 2+1 Lorentz group in the next Chapter.
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CHAPTER 3: A FURTHER EXAMPLE.

In this Chapter we shall present in some detail the case of the
semisimple noncompact Lie group of lowest dimension. In the former
two Chapters we dealt with the Heisenberg-Weyl group, which was 'as
abelian as possible': Only one of the three commutators in the alge-
bra was nonzero. Now we work on the 'least abelian' of three-para-
meter groups: The 2+1 Lorentz group S0(2,1) and its covering group

SL(2,R) .

The 2+1 Lorentz group has many resemblances as well as definite
differences with the three-dimensional rotation group SO0(3), which
is probably most familiar for physicists who have worked with quantum
mechanical systems such as atoms and nuclei. We shall find all irre-
ducible unitary representations of the algebra and covering group.
We then realize both the algebra and the group on a coset space rela-
ted to the Iwasawa decomposition: the circle, and functions and dif-
ferential operators thereupon. As a final development, we find the
in general nonlocal measure defining Hilbert spaces of functions on
the circle, for the various representation series.

3.1 The S0(2,1) group and algebra.

Consider a three-dimsnsignal ﬁpacezR3 with metric (+,-,-),
where the distance is d“= xj; - x5 - x,. This is invariant under
the '2+1' Lorentz transformations. These transformations are repre-
sented by (pseudo-) rotations around each of the three axes,

10 0 0 0 0

exp (WJ‘;)= 0 chy shy @J(; = o o -¢]), (3.1a)
0 sh vy chy 0 -4 0
chxy 0 shx 0 0 -4

exp (£ xJg)=\ 0o T 0 « J3 =l o o o) (3.1
shyx 0 chy -£L 0 0
050 -54np 0 0 4 0

exp (L ¢ Jg )= 54ind  cosdp 0 © Jg = |-« 0 0 ). (3.1¢)
0 0 1 0 0 0

We have expressed the rotation around the rth axis as exp(4 o J%) in
order to produce a 3x3 representation of the associated Lie algebra.
The distance is also invariant under the inversions x G——xo and

Xy ¢ -X;; these compound (in semidirect product) with (3.1). We shall
not consider them in what follows, as we are interested primarily in
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reaching every element with a Lie generator, and they lie in group
components not connected to the identity.

From (3.1) we define the 3x3 faithful group representation of
the 2+1 Lorentz group as

6 (e,8,Y) = exp (aJ]) exo (éaJy) exp (év)y) (3.2a)

o =amod Zr, vy =y mod Zr , B ER, (3.2b)

thereby parametrizing it through the Eufer angles a,B,y adapted for
the nonpositive metric. The matrices have unit determinant while
the generators], are all traceless.

The abstract Lorentz group composition law is obtained from
the composition law of the matrix representation (3.2) in the same
way as done for the Heisenberg-Weyl group in (2.1)-(2.2). The
matrices (3.2) are '2+1' pseudo-orthogonal, i. e. orthogonal with
respect to the Lorentz metric | as

-1 0 0 \
LG - L L=\ o
1‘/ (3.3a)

We call this group, Special (i.e. of unit determlnant) Orthogonal
group in 2+1 real dimensions: SO(2,1). The fact that no isochorous
space-time inversions are included is usually denoted through a zero
subscript, but we shall omit it understanding that we deal with the
connected Lie group only.

Correspondingly, the algebra representation matrices are pseudo-
skew-symmetric:

JooLo=-L ), k=1, 2, 0. (3.3b)
k
and satisfy the S0(2,1) algebra give by

[J,,Jz]= -LJO, [JZ,J0]= < Jq, [JO’JT]: L JZ' (3.4)

Notice the minus sign in the first commutator: The ordinary three-
dimensional rotation group algebra so(3) has a plus sign in its

stead. one cannot bring so(3) to (3.4), no matter how we redefine ge-
nerator signs, unless, of course, we introduce A's (J,~ J L] ),
but as we work with real groups, its representation slruc ure would
be readically changed.

3.2 The SU(1,1) algebra and group.

We are familiar with Pauli matrices, so we may look for another
representation of the Lie algebra so(2,1) in (3.4) through 2x2 matri-
ces. Indeed, we can associate the representation
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b4

. o chy/? —ishy/?
0) Pl =\ e chuyz
3.5a)

o 1 chy/?  shy/2
> U. = 1 3 u' =
Jprdy =3 (1 o)"eXp“XJz" (Ahx/z chx/2>,

w
—
¥
Ce
-
|
N —
—-_— O
|
~

, (3.5b)
-1 0 -L9/2
Jo»J4 - 1 2V ANE ‘ 'g/Z
0 Y T7\o 1 P48y 0 ePre ],
: . . : (3.5¢)

The matrices to the right define a matrix group

G* (a,B,v)= exp(x;&Jg) exp(LéJ(;) exp(/;\_(J‘;) ) (3.6a)

o =amod 41, Y=y mod 21, B E R. (3.6b)
In particular notice that
6"(a,8,7)=-6"(3,+27,8,7) = - G“(,5, v+2r)= Glavdn,B,7). (3.6¢)

The 2%X2 matrices (3.6) have unit determinant and the generator
matrices in (3.5) are traceless. The abstract group with the compo-
sition law obtained from (3.6) constitutes the special wseudo-unita-
ry group in 1+1 dimensions SU(1,1):

1 0
u ~ut ~ (3.7a)
6 93 0 = ik % _<0 -1)’

u _ ut _
Jk 95 = 03 Jk , k=1,2,0. (3.7b)

The Lie algebra of SU(1,1), su(1,1), is dentical to so (2,1)
in (3.4); the groups SU(1,1) and S0(2,1) are not. As in spin angu-
lar_momentum theory, SU(1,1) covers S0(2,1) twice, since between
G“(a,B,y) and G (a,B,y) we can establish a 2:1 mapping given by
Gu‘(ux B;Y) —>GO(U.,B,Y) and Gu(o‘+2ﬂ’ B,Y) £ GO(O.,B',Y\).

An alternative parametrization of the SU(1,1) group which is
sometimes preferable to the Euler angles in (3.6) is found through
demanding (3.7a) for any 2x2 complex matrix. This leads to

4(n,0) - (n e*) (3.8a)
» 0 n , .

[n|2-|e]2 =1, n,0 € C. (3.8b)
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In this parametrization, the SU(1,1) manifold is a two~dimensional

complex hyperboloid. The ralation between. the Euler angle parame-

ters in (3.6) and the parameters in (3.8) favoured by Bargmann (23,
Sect. 3b) is easily found(reinterpreted by Sally: 45, p. 3) as

n o= T ey e Ll IT g (3.8¢)

3.3 The group SL(2,R).

Another parametrization of SU(1,1) is obtained through a sim-
ilarity transformation of (3.8) as

S a b 1 -1 " 1T -1\-1
G (a»b;c) = c d = s =i G (n,@) g =i =
Re n - Re © =lmn+Im©
Nimn+1mo Re n.+Re 0/, (3.9a)

ad-be=1, a,b,c,d € R. (3.9b)

The corresponding 2x2 algebra representation is

' h¥/2  shv/?
s.4 (01 T
-7 (1 0) © exp (40y) = (shwz chw/z), (3.10a)
‘ X2
S _ 4 T 0 o & )
X <0 _7>©‘ ep Loz = <0 X, (3.10b)
o ‘ ¢/Z sing/2

S _ 4 0 -1 T
Jo ~ 7 (7 0)@ exp (L¢J0) —<-sin¢/2 cosdit ) (3.10¢)

In this form, two further group isomorphisms are displayed: Since
GS(a,b,c) is the most general unimodular (unit determinant) 2x2 real
matrix, the group represented here is clearly SL(2,R).

The 2x2 unimodular real matrices (3.10) have the further pro-
perty:

5 01
© 56 -5, s () (3.11)

where § is the symplectic metric matrix. The relation (3.11) defi-
nes the two-dimensional real symplectic group Sp(2,R). This group
and its 2N -dimensional versions Sp(2N,R) are important as dynamical
groups -rather, algebras- for the N -dimensional harmonic oscillator.
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3.4 The covering group SL(2,R).

Ve saw 50(2,1) & su(1,1) T sL2,R) T sp(2,R). what are

their connectivity properties? A convenient handle is provided by
the complex hyperboloid in the n-6 plane of SU(1,1). Although we
need four dlmenSlon§ we can l%ok at the surface described by
(Ren) Z+(1mn) Z- (Re®) Z=1 + (I1m0) For fixed Im ©=0, the remaining
three parameters are constrained to a one-sheeted equilateral hyper-
boloid with a circular waist in the (Re n, Im n) plane. The group
unit g (1,0) is on that waist. As we let Im O range over R the
outside' of the hyperboloid fills. The group manifold of g (n 0)is
thus the full © complex p%ane, times the n complex punctured by a
round hole of radius 7+|@[ We may surround that hole any number
of times describing a path which may not be continuously deformed to
a vanishing loop. The argument of n increases, but whether or not
an increase by 2m is considered to bring us back to the starting
point depends on the number of distinct Riemann sheets we provide for
g4(n,0) in n .

The simply connected universal covering group of SU(1,1)~
~ SL(2,R) =~ sp(2,R), denoted by SL(2,R), is that where the argument
of n may take any real value without repeat|ng any group element.

A convenient parametrization for SL(2,R) is provided by (3.5)-
~(3.8) with new parameters as

: T e (3.122)

i ) - .12a

G (v,w) = ([y]"-1) Ll g

YyEC, Iy| <1, w€R, (3.12b)
where

y=0/n , w=argn . : (3.12¢)
The rotation subgroup exp (4¢J ) in-particular, unwinds from the

twice-covered circle (3.6b) to %he real line.

3.5 Raising, lowering and Casimir algebra elements.

In studying the self-adjoint representations of the Lie algebra
s1(2,R) we search for matrices or integral kernels to represent the
three algebra generators J, , k=0,1,2 in (3.4). It proves conve-
nient to define the complex linear combinations

J, =3, +47J (3::13)

+ 1

R TP
which together with J also define the algebra though their commuta-
tion relations

15, J,1 =23, 13, 31=-13. (3.14)
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If the Jh are represented by self-adjoint matrices/integral kernels
Jh = ka , then J++= J_ and Jf = J+. They are the raising and lowe-
fing operators. - - -

An operator in the enveloping algebra of s1(2,R) and in the
centre of the right- and left- acting algebra, is the second-order
Casimir operator

” F7J 0. (3.15)

3.6 Eigenbases for a representation.

We follows a classical approach which parallels the standard
treatment of angular momentum (c.f. 46, p. 24-26), noting that if
we construct eigenfunctions OF\IO and

dy ¢>ﬁ = u¢ﬁ s (3.16a)

C ¢ﬁ * q¢ﬁ ,q = k(1-R], (3.16b)
then the JIi will act as raising and lowering operators:

Iot = e, o, (3.17a)

JI_¢§ = c;a’ucSﬁ_,. (3.17b)
The value of k will characterize the representation, while the range

We make two remarks on u and k . First, (3.17) tells us

of u will determine its rows. !
that if some ¢u is a basis function for some representation, then

-unless the proportéonality constant ¢t in (3.17) be zero at some
point- all other ¢u+ﬂ , n integer, will be involved. We can thus ;
write the J ) -eigenvalue as u= m + ¢ , where m is integer and

es(-1/2, 1/2°]1. 1If we work with the global representations of S0(2,1),
“HO will allow only for integer u and hence only €=0 is allowed.

For SU(1,1) = SL(2,R) e=0 and € = 1/2 are allowed, as analogues of
vector and spinor representations of SU(2). If it is SL(Z,R) we are
working with, all e in (-1/2, 1/2] are appropiate. Second, we have
followed Bargmann (23) in writing the Casimir operator eigenvalue |
q€R as R(I1-R). Its convenience will be seen below. The number
k(1-k) is invariant under ke 1 - k . e. an inversion through the
k=1/2 point in the complex plane. Also, ¢ is real for k real
(kR =1/2 in order not to double-count), but also for k=1/2+{p,0€R.
We thus have

¢<1/4 < LER. (3.18a)

I
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1

< k =gt ip, o € R. (3.18b)

1
4

3.7 Self-adjoint representations.

The third azsumption in searching for self-adjoint representa-
tions is that {¢p },.7 or a proper irreducible subset thereof,
constétute an orthonormal and complete bas%& under an inner product
(-, € Wwhich defines some Hilbert space > still to be determi-
ned. The generator representation J; , f=0,7,2 will be self-adjoint
in that space; it will allow us Firs{ to fix the proportionality cons-
tants ciu in (3.17) as

k

# k b
]Czqu|2(¢u17’ ¢ui7) - (ﬂi¢ﬁ’\ﬂi¢u ) =

]

k k k Y
(o5 L 1. 05 ) = 68, 10 +\ﬂ0i‘ﬂ0]¢ﬁ) - (9)

7 kR
(g +u° % p) (<Pu, ¢u)°

As we demand that (¢ﬁ, ¢ﬁ) be unity for all u in the spectrum of

\ﬂo . lciulz is obtained as
+ 2 .
|chu| =Q+uz‘—“u=(uik)(u+kt”, (3.20)
’
which must be a positive quantity. This only al]ows+the absolute
value of ¢& to be determined, but if we denote by YEU the phase of
ciu , then"(3.17) become

‘H+¢3ﬁ * %%,u ‘?Sﬂ' (3.21a)
ey T VE, Lt Rl F e 172 (3.21b)

Egqs. (3.20) and (3.21) contain the information we need to find the
self-adjoint representations of s1(2,R). Non-self-adjoint ones will
be commented upon later.

3.8 The continuous representation series.

If both ¢ﬁ and ¢Ei7 are to be nonzero, 53.20) must be a positive
quantity, i. e. ¢ >-p® zu. The maximum of -u%Fu occurs at u, . =¥1/2
and has a value of 1/k; so recalling (3.18b) for q>1/4, thgaﬁepre-
sentation k= 1/2 +{p,p # 0 contains all values of u=m+e, me€,
for any fixed ¢ € (-1/2, 1/2].

The conditions ¢ > -y ¥ u = 1/4 —(u-umax)z may be satisfied
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also for a subset of ¢ € (1/2,1/2] such that the maximum of the
right-hand side does not fall in the p-content of the representation:
If u= m+ ¢ , the points falling nearest to the maxima umax=$1/2 do
so at a distance Mg 1/2 - |e| from it, so that only
q > |e|(1-]e|) =0 is required. For any fixed ¢ in (0, 1/4], thus,
we can find a range of e in (-1/2,1/2] which allows for unbounded
values of u . Writing ¢g= k(1-k) , adding -1/4 to both sides of the
inequality to complete squares, the condition on e for fixed real
k is given by |k-1/2|<1/2-|e|. In particular, for k = 0 all ¢
but € = 1/2 allow for the unbounded range of u .

Bargmsnn (23, see also 45) considers only SU(1,1) represegy?z-
tions: CE7Y the principal (integer) series for 1/4 <gq, and CE~
the prindipal (half-integer) sernies for 1/4 < gq. The exceptidnat
(or supplementary) series called CE~° occurs for 0 < q < 1/4. These
together are called the continuoustseries. We summarize them picto-
rically in Figs. la and 1b.

3.9 The 'Discrete' representation series.

We consider next the representations ¢ < 1/4 for which the posi-
tivity of (3.20) is violated for some values of p, which must be
absent from the range of eigenyalues of J,. Erom (3.18a),

(uih)éuikil) has two zeros: Wy = ¥ k and 4y, = * (k-1). Hence
lef |2, as given by (3.20)-(3.21%, has a formal negative value for
u &U(h-l, -k) and similarly |c, |° for u € (k, -k + 1). No point in

the spectrum of J, may be in those intervals. See Figs. 2a and 2b.
Consider first the case |k-1/2 | >1/2i. e. R € (-=, 0]V (1,),

where ¢ < 0. In those intervals, the distance between y; and U,

is larger than 1, so no € can be chosen such that tEe sequence

p=¢e+m mE z avoids falling in the negative- |c|” region unfess

it falls on the boundary zeros. The row index p will then have an

upper or lower Zggﬁd. For, consider what happens wben\ﬂ_ acts on the

"lowest state' ~' , U, = k: It gives zero since ¢, - = 0 , hence
¢k-1 does not Bélong to the irregﬂﬁibie eigenfunctigﬁ set of the
algebra, whégﬁ consists then of {¢h+ }m= . The same statement
holds for & -7, Wy = - k + 1, and only reglects the inversion symme-

try under e £ p, Correspon%ﬁ?gly+for J4_, the representation
must contain a 'highest state' ¢u+ , U, = kR = 1 which the raising
operator w&$ turpn to zero. The Z jrréducible eigenfunction set will
thB be {¢k-m—7 }m =0 ° and the analogue statement holds for
¢u+,u;=-.

These lower- and upper-bound representations were called 'Dis-
crete' series D, and D, by Bargmann (23). Since he worked with
SU(1,1), he allowed on%y for integer or half-integer values in the
spectrum {p} of‘ﬂo , so k was only allowed to be an integer or
half-integer. Here, it may be any real number.

When |k - 1/2| < 1/2 i.e. kE€E (0,1), q covers the interval
(0,1/4) twice, and the point q = 1/4 once (corregponding tok =1/2).

In this interval, the distance between u> and % is less than 1,
so that the sequence u=¢ +m, m€ 2 may 'jump' the forbidden
range of u . This constitutes the exceptional interval of the con-

tinuous series seen in the last Section. Again, lower- and upper-
bound representations occur when the lowest u falls on u; or ué and



FIGURES 1 The continuous C® irreducible representation series of
s1(2,0).  (a) as function ¢ of real q. (b) as function of complex

k  for q=k(1-k). Shaded regions correspond to allowed self-adjoint
representations. Dashed lines indicate that the region does not in-
clude the boundary. The parallel boundaries at € =-1/2 are to b
é?7?tified. Heavy lines indicate Bargmann's continuous series Cq and

q
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FIGURES 2 (a) the zeros of |CE |2. (b) the zeros of |c, IZ. Shaded

regions correspond to negative Values of these quantities which must
be excluded from the range of u.
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the highest on u* or u+ . We can make use of the inversion symmetry

k ¢ 1 -k in order to ascribe the lowest u of the lower-bound rep
resentation to u; = k, for k € (0,7) and, correspopdingly, the

highest u of t%e upper-bound representation to u; = - k for k €(0,1).

3.10 Some isolated points.

The points k = 1 and k = 0, both mapping on ¢ = 0 deserve
special attention. The first, k = 1, is on par with the neighbouring
points along k , it correspondsto D7 containing u= *(1+m),m=0,1,2,..
The point k = 0, however, is unique: It lies in the origin of Fégs.
2a and 2b, on zeros of bot A and ¢,,. In consequence,\ﬂ+¢ =0,
and so the eigenfunction ¢, is the basis for the one-dimensional tri-
vial representation of the algebra by zero. As a representation for
the group, ¢ constitutes the trivial one-dimensional unitary repre-
sentation.

In summary, the Igwer- and upper-bound self-adjoint represEnta-
tions of s1(2,R) are D, , kR > 0 containing the eigenfunctions ¢u of
‘HO and [ for u = i(h@m), m=0,1,2,.... If kR € (0,1] we can write
u=e £ m as for the continuous series, but keeping the congruence
interval of e to be (-1/2,1/2]. The discrete series provide the
boundaries of the open regions 05 the exceptional interval in Figs.
la and 1b. In particular, the C series convers, the interval ¢ > 0:
The point ¢ = 0 belong;zto the discrete series D7 and to the trivial
D, . Similarly, the C serigs covers the interval ¢ > 1/4, while
tge point ¢ = 1/4 beloﬁgs to D; 2

For 0 <q < 1/4 both the eﬁceptional continuous and discrete se-
ries coexist. Their basis functions have the same eigenvalue under
C but different spectra under JJ,. This underlines the need of
having two different Hilbert spaces to accomodate them.

In order to express these facts in the manner of Figs. la and
b, we may let, e range outside the interval (-1/2,1/2], so that the
u-content of D, be u=e¢*tm m=20,1,2,... (i. e. e =% k). We may
then,superpose them as in Fig. 3. In order to display the representa-
tions clearly in the k-plane, we refer the reader to Figs. L4, where
we mark those representations of so(2,1) which contain the eigenvalues
u=c¢e+m i.e. plotting vector representations of $0(2,1) (e = 0),
spinor representations (e = 1/2), four-fold covering representations

(e = 1/4), etc.

Having classified all self-adjoint representations of the algebra
s1(2,R) in terms of eigenbases of the Casimir operator [ 1abelled by
its eigenvalues ¢ = k(7-k), and having specified their representation
content with respect to\jo , we can give the generator matrix elements

h}E _ k,E kE _ k k,
Jj -4 (Jj)m m'"’ (Jj)m,m’ B (¢m+efﬂj ¢m'+e),j=1,2,0, or £ 0,
(3.22)
as
(e, = s e m =5, 0oulm, el (3.23a)



56

;/2 *}

-3/2T

+
FIGURE 3. Discrete DE and continuous Cz irreducible representation
series.
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fold-valued irreducible
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-+
[
mtl,m' “k,u(m'e),

(J+lﬁ’;, 5m+1,m'[(m'+5*k)(m'+e—h+1)]7/z=a

(3.23b)
(JIBE, < s 1, (m'+e-k) (m'+e+k-1)] /2=

-‘'mm' m 6m—1,m'ch,u(m',e)'
(3.23c)

We may give a résumé of the ranges of the various indices as

€, ! 1, - 1 1 1
Cot mm' €2, k€ {z+dp,0 €RIV ((0,1), |bgl< 7 -]t e e(_%,T]’
(3.24a)
D mm' €10,1,2,..}, kE (0,%), € =k, (3.24b)
Dé: mm' € {0,-1,-2,...}, RE (0,»), ¢ = k. (3.24c)

These are infinite matrices which follow the commutation relations
(3.14) and for which the Casimir operator is represented by a multi-
ple q of the unit matrix.

3.11 '"Other" representations.

Some words about non-self-adjoint representations. Jhe self-ad-
jointness of (3.22)-(3.24) stemmed out of asking for g+u“tu in (3.20)
to be positive, which in turn came from the kﬁ+ = d_ requirement in
the second equality of (3.19). If we work only with the raising and
lowering action ofJI+ on some set of vector components as given in
(3.21), accepting imaginary ¢, '4, then we may let k be complex.
Choosing any given complex u as a starting point, we obtain all
other u+n, n € Z unless we meet a zero coefficient, in which case
indecomposability will occur. b

Suppose we start wéth aknegative integer k , with ¢, . We may
apply j,+ to obtain ¢+1, ®,5,-... Figures 2a and 2b tell us that
applying “d . a sufficient number of times will take us to
My = =k = i|ﬁ| , but then as ¢, bl= 0, JL Pr = 0 . We have thus
a (ZIE|+1)-dimensional non-sel%lééJéint represe tLtion of s1(2,R).
The elements of the algebra will be represented as_ follows: J,will
be diagonal, real and hence self-adjoint, while J+jL =-J so J] and
J, will be skew-adjoint and 4 times their so(3) analogues. The
same procedure applies for any integer or half-integer k=;|h[, as
there the upper and lower bounds given by the zeroes of ¢, are sepa-
rated by integers. Moreover, the offending factors which Broduce the
zero barriers pay be removed by a simple norm redefinition of the ba-
sis elements ¢u , as they are no longer subject to any orthonormali-
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ty conditions. We may thus build representations with 'one-way' bar-
riers, through which one raise, but not lower u, or vice-versa. This
implies a structure of the type (1.17) at each of two barriers, lea-
ding to indecomposable representations with the structures

X X X\ /X 0 0\ /X X 0 X 00
0 X X J{X X 0J{0 X 0 Jand| X X X
00 X/, X X/,\0 X X/, 00X

Indecomposable representations of so(2,1) have been described
by Chacén, Levi and Moshinsky (47), and those of arbitrary semi-
simple groups by Gruber and Klimyk (L48).

3.12 Subgroups and coset spaces.

We have not yet given any realization of the so(2,1) algebra
generators (3.4)-(3.14) as diffeEential operators on a manifold, nor
have we provided the functions ¢u or specified the Hilbert spaces for
which these will provide complete and orthonormal bases. A general
way of providing these is in following the procedure of Chapter 2,
namely we let the group act on functions of coset spaces of the
group and thus find the infinitesimal generators as differential opera-
tors on the coset manifolds. |In order to construct these, we should
know all nonequivalent subgroups of SL(2,R) and preferably divide by
the largest proper subgroup so that the coset space have as low dimen-
sion as possible, without loosing information. For su(1,1) = s1(2,R)
this is relatively simple and the resultg in the 2x2 representation
(3.9)-(3.10), and up to equivalence g+g ' are as follows:

a) The elliptic subalgebra (subgroup) E

S _ AL [0-1 8y [ cosd/2  sing/2
To2Jdo 72 (1 o)’ sxpleh g ‘(—unqs/z c0/5¢/2)€ 8 125

where the parameter ¢ ranges over [0,4w) for SU(1,1)~ SL(2,R), and
may be identified through (3.9) and (3.12) with the parameter w for

SL(2,R), ranging over the full real line.
b) The hyperbolic subalgebra (subgroup) H
X

S_4if10 1S
Jp > dy - %(o-z) ’ eXp(Lxth(o ex/2>€ H, x € R. (3.25b)

c) The parabofic subalgebra (subgroup) P

S S _fo-«¢ T (1 ¢
Joe Ty = Jo + Jy = (o o>’ exp (L2l JprJyl! '(o 1) P EER
(3.25¢)

d) There is a single two-parameter s0fvabfe subalgebra (subgroups) S
obtained from H and P generated by JZ and JO + Jj , with group
elements i
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1¢ X2 X2 £ X2
Al €) =(0 ,><0 ex/z>=(0 X2 )E s, (3.26)

We can now select among a number of homogeneous spaces G,\G
where G is S0(2,1) or SL(2,R), and Gy may be any of (3.25)-(%.26).
The S\ SL(2,R) coset space is a one-dimensional manifold, the cove-
ring of the circle S7. It turns out that this manifold by itself is
too 'small' to contain all representations, although we shall come
back to it below with a new interpretation.

Another most natural choice for coset space is E\ SL(2,R), as
the ensuing description closely resembles the description of the rota-
tion group SO(3) through functions on the sphere Sy = S0(2) \ sS0(3),
and the Euler angle decomposition of S0(2,1) in (3.2) is convenient

for its description. The problem with this coset space is that al-
though we do indeed get the expression for the generators =0,1,

as in (2.8)),as differential operators of the first degree in’” B and

Y , the Casimir operator will be a second-order differential opera-

tor resembling the angular part of the Laplacian (46, Eqs. (111-6)-
(111-8), except for its eigenvalues. These functions are rather te-
dious to work with in integrations. A similar outcome awaits H\SL(2,R)

549z t?? functions.bon (chg)ethe in Chapter VI, Eqs. 3.2(6) and
.5(9")). ’

3.13 The Iwasawa decomposition.

The simplest approach by far is to use the coset space P \SL(2,R)
with a particularly fortunate choice of group parameters. This is gi-
ven by the Iwasawa decomposition of g € SL(2,R)

_fa b (1 g\ [fexp(-x/2) 0 cos$/? sinp/?
G _<c d> -(0 1><0 exp(x/2)> (-sin¢>/2 cosd/?

cos¢/? Q_X/2~ £ sing/2 QX/Z sing/? e_X/2+£ cosp/? QX/Z

-sing/2 eX/Z cosp/? ex/Z
(3.27a)
¢ c X 2,2 b, c/d
tan 5 = - , et ="+, £ =5+ . (3.27b)
i d d Zoq?

The lwasawa decomposition of a noncompact group (20, Sect. 1.6.C)
or algebra (50) expresses an arbitrary group element g € G as g=nak
where k € K , the maximal compact subgroup -in this case S0(2) genera-
ted by J, - times a € A, a maximal abelian subgroup, times n € N, -
a nilpotent subgroup. The product NA is the solvable group in
(3.26).

Functions on the coset space M=P \SL(2,R) are two-variable func-
tions 4(x,9) whose transformation properties under right action of
the group [c. f. (2.4a)] by some element go,e SL(2,R) is

|
b
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99 (R)
6(x,¢)——’6(x'(x,¢,90),¢’(x,¢,90)) ,  (3.28a)

and can be obtained through multiplying (3.27a) on the right by such
a matrix

abl) g,fa'b"\_fab\fag bg\ . [aay+be ab,+bd,
(c d)—()—(c'd’> (c d)(ao dyg ca0+dcg cbg+dd0 . (3.28b)
Making use of (3.27b) we find that the coset parameters transform as

cao+dc0 aotand)/Z— ¢

= = (3.29a)
cb0+ddb do = bO tang/Z ,

tan %—+ tan %L

& > X = (eagrdey)? ¢ (cb0+dd0)2

oX cosZ(J%J[ (aotan %-— co)z + (do-botan ngZ].

(3.29b)

3.14 s1(2,R) algebras of differential operators.

Global transformations will be futher analyzed below; here we
are interested in infinitessimal transformations which in 3 x 3 ma-
trix form (3.10) appear as

1 1
a, b 1-» 6 (8,48 ,)
0 do c 1 i (8T w5, 48 35 + ol <, T T
e, dy 171 T9272%%07 g 51 9343
7817 % 7 °2

(3.30a)

On a dense subspace of the space of functions (3.28a) on the
coset space M = P\ SL(2,R), they are given by

§lx o) = Livcls D) +o,dl +5p Jiro 621160091, (3.30b)
whereJM , k=0,1,2 will be first-order differential operators in

x and ¢ . Replacement of (3.30a) in (3.29), Taylor expansion and
collection of dk's allows us to find them:

1

JM
2

L(cos¢3¢ + sin¢ax), (3.31a)

i(sin¢8¢ - cos¢8x), (3.31b)
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M L |
Jo = = "‘3¢ ' (3-3]C) ‘

They satisfy the commutation relations (3.4). From here we can |
find the raising and lowering operators (3.13) as

- J[’;‘ ; /;JIA; =i (35 - 431, (3.32a) é
M _ oM oM _ . i .
NI —J[I z(.\ﬂz-&e (a¢+wx). (3.32b)

Most important, we find the Casimir operator (3.14) in this realiza-
tion to be

2 2
Mo_ oM M M
C-d; +d;-dy =-3+). (3.33)

One can see the special feature of the Iwasawa decomposiﬁion
(3.27a) and the parabolic coset spacg M=P \SL(2,R): That JI‘ is

a differential operator in ¢ and [ in yx, . Functions on M~ belong-
ing to a given eigenvalue k(7-k) under ([ can be characterized
through

§, x8) = < g 100 (3.34)

On these spaces of functions, 3 may be replaced by -k, so as to
obtain from (3.31) and (3.32),

B - o (5 s ), (3.35a)

Jlék) = A3y (3.35b)

This is the s1(2,R) algebra realization employed by Bargmann (23).
Equation (3.34) will be used below to examine the global action of
SL(2,R) on this space of functions.

3.15 Basis functions on the circle.

In Bargmann's realization, the normalized eigenfunctiqng ¢5 in
Eq. (3.16) are proportional to the exponential functions . "The
eigenvalue u we saw, must range in integer steps u=etm,m=0,1,7,...

< £ . £
passing through e(for C;) or starting from¢ai%$lue u=e, for Dk’ as
specified in Eqs. (3.24), so that ed = o9 We let ¢ range on
the unit circle Sl(i.e. ¢=¢ modZr) and write the(possibly multivalued)
function f(¢) on a space associated with k and € as

flo) = 0 DOIRL g i (3.362)
n
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where we are indicating the sum over the proper u-set as

() o +
€ s
= = i =%
E E [ for Ch(l-k)]’ E [ for Dk , with € k1. (3.36b)
n n=-o n=
The possible multivaluation will not be a problem when calculating

inner products - with a measure stilé to be faound- , as any sesqui-
linear inner product involving,(%‘“] ) and e2? with uj=e+m; and
ug=etmy will cancel out the e*®” factors, or otherwise render them
innocuous.

We have not yet written down the na%maﬂizatian constants for
the eigenfunctions. |If we asgype that L (31) is the proper space,
these constants will be (2m) for all m. But we may have other
spaces. In general their normalization will be prescribed by the
condition (3.19)-(3.21). b

We may fix éhe normalization of ¢u for uo=s and from this ob-
tain all other ¢ +m? with € and m ra?Ejng as in (3.36), through
ascending or descending by means of J|' [ :

™ 691 ¢ (IR ok i) -

m-1
5 [ﬂ e, em] ¢kim (6). (3.37a)
yl:

€
0 .
We have the realization (3.35a) for ih)and ¢S(¢)=K§ eL€¢, hence

m-1 . )
ok, (9] = K [ﬂ . i ]” 2™ (3 i) e

n=

m

€xm € n

€ [ [ Z,einJ~7 (~e¢h)[éeii¢(3¢i4h)]m'leé(€i7)¢
;/L:

k -e¥k¥n Lletm)d
S el
"7 TR, exn (3.37b)
m-1 ;
- Kk k I etnth 1/2 e&(eim)¢
€ Neam exn+ (1-R) 2
n=0
where nh is the product of the inyerse of the

+
hases vy, of the
etm p qu

ci in (3.21) for u=e,e+l, ..., es(n-1).
We shall not need a definite phase convention in these notes. It

shoulq only be noted that phases can be arranged so that the yi =1;

that.ls, that the raising and lowering operators have purely pogitive

matrix matrix elements. This is the phase definition followed in

(23, Sect. 6d) and known as Bargmann's convention.
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We use the Pochhammer product symbol

m-1
[1(a*n) = afa+1)---(a+m-1)=(a] = T(a+m)/T(a), (3.37¢)
n=0
m-1

O(b—n) = b(b-m+1)m = T(b+1)/r(b+1-m), (3.37d)
yl:

so as to write (3.37b) in the form

kR - k k Ok,e e&(eim) o}

¢qm(w = Kenesp +m

(3.38a)

(kte) 1/2 [1/2 1/2
ke _ m |r(e+1-R) T(e+kim) | |r(1-kte) T (hte+m)
%tm * | TT-kEelm “|TTe*R] Tl(e+1-km) “|ITRze)  T(1-Rfem)|.

(3.38b)

We now examine the characteristics of the OE; square root fac-
tor for the various representation series. We refer to (3.24)-(3.36b)
for notation and index ranges. For the principal series C in the
nonexceptional interval, k=1/2+{p, p€R and hence the ratio®of func-
tions of the form y(71-k)/y(k)=y(1/2-4p)/v(1/2+4p) has absolute value
unity.

Thus

Cq’ q > %-, gn =1 (continuou§ (3.39a)
nonexceptional).

For the exceptional interval €(0,7), on the other hand, for
k= 1/2 we have (k*+a)/(1-k+a) = 1. The ratio of I' -functions becomes
a product of such factors for a=*e,*e+],...,*e+m-1, so that

(0,1/2) .
(1/2,1) , %tm

€

Cok(i-k), &

S 1 (continuous (3.39b)
exceptional).

Finally, for the discrete series Uz , where e=tk, we may write expli-

citly

'Di he (0','7/2) k,ih _ T (2k+m) 1/2
, (1/2,) %tm T{ZR]T (m+T) = 1,(discrete) .

(3.39¢)

The inversion symmetry k < 1-k is not explicitly present in this
formula, but a unitary intertwining operator may be set up to bridge
these two representations (45, Sects. 2.3 and 2.4).
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3.16 In search of Hilbert spaces.

We have now sets of functions ¢ (¢) where n +is in the spectrum
of J, in agiven,definite representa%ion, (ct or D) 9eS, (the cir-
cle) given by (3.8). We search for inner products where these are
orthonormal and complete. Completeness of these denumerable bases,
when proven, will define the Hilbert spaces as the closure of linear
combinations of these functions.

The most general sesquilinear inner product on S; may be written
as

(4, ()(h 2 —ﬁqb ﬁ¢' 5(¢)*n ”2’5)(¢,¢’) gle'). (3.40)

(Bro?ugt thézf ?Bra generators (3.35) must be hermi-
tian: (] §,9) (6\ﬂ (H? have(ﬁ?en before the requi-
rements |$posed 7 )j 1,2 , i. e. J We now impose the
hermiticity of JI 5 |ntegrat|ng by parts

LR g, g0 Boe) - ﬁ¢ﬁ¢'(—za¢ g1 2 =l (p,0m) glo0)
S S
d¢]d¢' m)* -4 n”“g’w 6')1gle") |

Y (k,e) |

|
fmﬁb §06) Liag, 2 ® =) 16,61)15001) |

(3.41)

Under thl?h’nn

n

This leads to

/d¢ﬁ¢' m)*[ta¢—a¢,m‘h’€’(¢>,¢')1g(¢') -0 (3.42)
S

S
which is to holé forlall §(¢) and gl¢')in a space ﬂih E). There is a

?Ehey subtle point to the ensglng reasoning, and that is since
i may be different éroT (31), what (3.42) actually implies is
that z(¢,¢' )—(8 -9 ,)? (¢,0'], as a function of ¢, is orthogonal
lii the sanas ab L°(84) to 6(¢), and 5|m|larly orthogonal to g(¢')

in the same sense. If we were to put z(¢,¢') as an inner product
measure in pla?E of§2(¢ ¢') in (3.40), the result would be zero for
all 4,g in , and hence z(¢,¢'] is equivalent to the zero func-

tion itself. On the basis of this equivalence, we may replace
z(¢,9') by zero and thus conclude

(0,-251 1210 (9,612 0 =2 =) (9,61 0 BEg9r),  (3.130)

i. e. 2 is a function only of the angle difference ¢-¢' . As the
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bgsis fgnctions QLM¢ with u as S?EcéfiEd by the repreS?Etgfion

C_ or Dp, is assumed complete in , we may expand . (y) as

q
)
alloeliy) - E wrﬁ’ee‘(e‘m)‘” , (3.43b)
m

with E(k) as in (3.36), and w%’e as yet unknown and put it in (3.40) with
the orthonormality condition imposed on the basis functions, using

the Fourier series orthogonality results for the exponential func-
tions. We thus develop

_ .,k l (k,e) _ o R ke i(etm)o,*
Smomt = Besm, Oea) ©% = fag [k ot ST
Sy

; (k)whs Qi(e+m”)(¢—¢')][Kk ; ke L(eim')¢’]
m”

[¢] e
e extm' Em'

m”
k2 ke |* R k) k
=K Ty S O oy ] ( )gzmﬁ x
m
o J/;¢ Anle J/Q¢' R " 1ety
g 02, ke 2 b
=8 (zﬂ)2|K€|2|Oi;| Wiy (3.4ka)

Ithfollows that the proper coefficients for the weight function
s € !
Q7" (¢-9") are

(1-kte)
s ELIT | e L
- £ (Zn|KC1) 7| (Rxe)
€ m
- 1 e T(e+1-k) _T(etktm) (3.4kb)
(ZWIKEI) T (e+k) T (e+1-ktm)
] I (kte) I (1-kte+m)
(2n (K212 | rli-kee) TlREcem)

3.17 Local and nonlocal weight functions.

Let us now examine the vari?gs representation series in order

. A JE
to give the description of the ¥ spaces.

For the conginuous nonexceptional series C~ we have n€Z and :
(3.39a), since Tt is only a phase. Then

ol/2Hose(y) - (2 [KE| 2 ZQUWEW =¥ 2 |KR 2 Ty

(S
m=2 (3.45a)

I
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We have hence

m?h=7/Z+LOyE _ L2(31} (3.45b)

and the inner product is the ordinary L2~product on the circle.
For the continuous exceptional series,

Qk,e(w) _ ( 1 [Zwrﬁe e&’(sﬂn)lp N wfaren Q/C(e—m)w]
m=0

7
27 |K
| EI) m=1
i QLEllJ [Z(1~k+e)m(7)m eimtp +i(1-k-€)m(”m Q-Lmd) {I
7 -
(ZHIKEI) s (kte)p e mzo(h—e)m m:
eisw b »
= W[ZFI(”I-k+E;h+E;Q )+2F7(1,1—k‘€;k—€;€ Lw)"] .
™
E (3.46a)

When e€=0 it was proven by Bargmann (23, Eqs. (8.7), (8.9) and (8.11))
that this expression reduces to

o

' (1-k) . ,-1-k
a0y - I{2 2} : , [m] z— — I (k) (1-cos 3)&T

(Zﬂ|K0|) (R) . v/ |[K, | r'(k-1/2) .

m=-oo |m| 0
(3.46b)

Bargmann (23, Sect. 8c) also proves that ﬂk’o is a Hilbert space when
RE(1/2,1), while Sally (45, Sect. 2.4) proves this for the remaining
cases. +
For the discrete series DE ,finally, we can use (3.39c)-(3.L4k4)
in order to find

[e2)

nh,ihw)zz;w!;y,nik A lkrm)y
m=

7 (3.47)
iRy :
: Q__?T ZF](I,I;Zk;ew)

(ZﬂlKihl)

This series converges absolutely for k = 1, conditionally for

1/2 < k<1 (excluding ¢=0,2m,... although its integral with boun-
ded functions is bounded), and diverges for k=1/2. For 0< R <1/2
this series diverges but may still be used to define an inner product
between appropiately convergent functions.

The nonlocal inner product (3.47) has been examined in (51) where
it is proven that it defines a Hilbert space. There (37, Appendix) it
is also proven that this representation is equivalent to the descrip-
tion of DE by Bargmann and Sally (23, 45) as an integral over the
complex unit disk, and by Gel'fand (51, Chapter VIIl) for single-valued
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representations, of S0(2,1) on the uppTE)complex half-plane, In the
Hilbert space ﬂk’_ , the operator J =via¢ has thus a spectrum
given by *R,*(k+1],%(k+2],..., in contrast with the usual L(S4],
where it is Z.

3.18 Unitary group action and multipliers.

The measures found above also make the exponentiated action
of the algebra generators unitary. Let us,make this explicit. The
SL{Z,R] action on functions belonging to ﬁk’g is found from (3.29)
and (3.34). It is convenient to parametrize the acting group
through Euler angles (3.6). The action of exp(imﬂo ) and exp(iBJEB)

on the coset parameters of M=P \SL(2,R) are found giving in (3.2
the gy parameters through their values (3.10), namely
¢,(0,a)
eimlg ¢ tan %— —» tan 0 7 = tan ¢;a (3.48a)
oM Xp (X,9,0)
el P = X (3.48b)
¢,(0,8) _
eé&ﬂ% ¢ tan %— — tan 2 7 = ¢ ® tan % (3.49a)
o M Xo(x,9,8) .
'L&ﬂ P, ¢ VARSARARNIN [ _ X sin ¢
e 2 Pt — e =e[ chB+cos 7 shg] =e SW)
(3.49b)
From here, it follows through (3.34) that the SL(2,R) groupffction on
functions in the (k,e) -irreducible representation spaces #H’% is
.M
/(-Y\ﬂ '
= e -
g0 L0 o OB g grgg ), (3.50a)
and hence, on functions on S,,
/CY\I = ' X
§,18) St TEX XY R (g1 4))
(3.50b)
= Lu,(0.01% g, 10" (8,7)).

The group action has thus become a multipfier action. As in Chapter
2, the function's argument is transformed, and the function itself
is multiplied by a factor

u_ (0,y) = X' Xa®sv) x| (3.50c)

For the two generating Euler subgroups of (3.48), we have

"
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- rlk)
LaJ]
e 0 wylo,al = 7 (3.512)
=1
o (R
A8J1 ’ 39,(0,8)
. 2 _ ] __sin¢ _ 2
e u2(¢,6) = chp+cos 7 shg =C ¢2(¢,B) [ ” ].
Putting together (3.48a), (3.50b) and (3.51a) we see that the action
of exp(4aJ,) is a pure translation in Sl’ This is a manifestly
unitary transformation
«L'a‘_[(gh) ALOLJ(ok) (k,e) (k¢
(e §, ¢ gl = (4, 9", (3.52a)

in any of the mke spaces seen above, as shown by a simple change of
variables in the integral.

As to the action of exp(4BJ,), we see that it defoxms the circle
parameter in the sense that a¢2( B)/5¢# 1. Interestingly, as the
last equality in (3.51b) shows, this is exactly given by the multi-
plier function. Now from (3.49a), (3.50b) and (3.51b), we may show
that

TS (k)
LBJ BJ
e "2 4 ot glkel o g lkee) (3.52b)

for all the spaces ﬁ"h’s . This js clear for the nonexceptional
continuous(serifs, where in the L°(S7) inner product, the change in
do is [u,(9,8)]1" * which,js egactly off by the product of the
multip]iegs: ([ (¢,B)]?72l&p)¥(u (¢,6))??§+Lz. The element which
is pleasing in tgis approach is tgat unitarity (3.52b) holds for all
series when the appropiate inner product and weight function (3.46)
and (3.47) are used.

Once appropiate Hilbert spaces have been found -and for SL(2,R)
we have seen there are three families of them- the irreducible represen
tation matrix elements may be readily calculated.

3.19 Closing remarks.

Since we must stop at some point, we would like to insist on the
fact that SL(2,R), for allits'simplicitly', is a rather richly
structured object of which we have only given an overall view. Books
devoted to SL(2,R) exist (53). We should bear in mind that this is
just one example of a noncompact group. There exist others in higher
dimensions, nevertheless, the systematics in their treatment are not
very different from what we have seen for their smallest representa-
tive member.

We shall resist the temptation to close thise lectures notes with
a barrage of references, and simply point out that group theory, in
spite of its simple and very compact four defining axioms, appears
to contain a noncompact body of resu]ts.*
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